设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:38:13
设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=
x){nߣ:i%)%Fi@ZɎ)i:O;fDmmIפ_`gC]`vp-@0M` T\ȆiKICd@"`hQ3X!iTpV)8*`hE\!5Nh~qAbȻ8qA

设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=
设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=

设∫(0,x)f(t)dt=1/2f(x)-1/2,且f(0)=1,则f(x)=
∫(0->x)f(t)dt=(1/2)f(x)-1/2
f(x) =(1/2)f'(x)
∫df(x)/f(x) = 2 ∫dx
ln|f(x)| =2x + C
x=0
ln|f(0)| = C
=> C= 0
ln|f(x)| =2x
f(x) = e^(2x)