怎样才能求出函数的单调递增或递减区间?设y=f(x)是R上的减函数,则函数y=f(|x+3|)的单调增区间是什么?这道题要怎样求呢,它的思路和步骤是怎样的?相同的题型又是怎么解的?我只知道它的答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:32:02
怎样才能求出函数的单调递增或递减区间?设y=f(x)是R上的减函数,则函数y=f(|x+3|)的单调增区间是什么?这道题要怎样求呢,它的思路和步骤是怎样的?相同的题型又是怎么解的?我只知道它的答案
xRn@ b,P!S7`<"@h%;\RUɦjWXc9s*ٔPk;eSjKqJ9r?ٔ#SOgPx_&i9yEDzˀ@oɇrۉB$C-@"|C;

怎样才能求出函数的单调递增或递减区间?设y=f(x)是R上的减函数,则函数y=f(|x+3|)的单调增区间是什么?这道题要怎样求呢,它的思路和步骤是怎样的?相同的题型又是怎么解的?我只知道它的答案
怎样才能求出函数的单调递增或递减区间?
设y=f(x)是R上的减函数,则函数y=f(|x+3|)的单调增区间是什么?
这道题要怎样求呢,它的思路和步骤是怎样的?相同的题型又是怎么解的?
我只知道它的答案是(-∞,-3],
请你可不可以再说一下什么是还元法,

怎样才能求出函数的单调递增或递减区间?设y=f(x)是R上的减函数,则函数y=f(|x+3|)的单调增区间是什么?这道题要怎样求呢,它的思路和步骤是怎样的?相同的题型又是怎么解的?我只知道它的答案
你按我的思路想:
y=f(x)是R上的减函数.
所以y=f(|x|)在[0,+∞)上也是递减的.
又因为y=f(|x|)是关于y轴对称的,
所以在(-∞,0]上是递增的.
所以y=f(|x+3|)的递增区间就是(-∞,-3].
再给你说下最后一步怎么来的.
把y=f(|x|)写成y=f(|z|),再令z=x+3,(就是还元法)
因为y=f(|z|)中z对应的递增区间是(-∞,0],所以x=z-3对应的递增区间就是(-∞,-3].
完毕.