x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:01:31
xMN0RU(=;]% Oh",v\kV\<8N袛ћyӧ7,BR}~~dԳ$L?nUahdRx4;z`:32nfNc5oouqgyKJiڡHn>5=}l2Xc*g*ZIH%#3ڠʸVX:/@Yŝ6\*Z: PXD6,6!um40HQ(XD:;_P
x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1))
x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1))
x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1))
x1,x2,...,xn属于R+,证明:1/x1+1/x2+...+1/xn>=2(1/(x1+x2)+1/(x2+x3)+...+1/(xn+x1))
用琴森不等式证明((x1+x2+...+xn)/n)^(x1+x2+...+xn)
设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|
设函数f(x)=x-(x+1)ln(x+1)(x>-1)(1)求f(x)的单调区间(2)证明:当n>m>0时,(1+n)^m2012,且X1,X2,X3,……,Xn属于R+,X1+X2+X3+……+Xn=1时,①X1^2/(1+X1)+X2^2/(1+X2)+……+Xn^2/(1+Xn)>=1/(1+n)②[X1^2/(1+X1)+X2^2/(1+X2)+……+Xn^2/(1+Xn)]^(
设x1 x2 ……xn属于R+ 且x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1)
设x1 x2 ……xn属于R+ 且x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1)
设x1 x2 ……xn属于R+ x1+x2+……+xn=1求证 x1^2/(1+x1) +x2^2/(1+x2)+……+xn^2/(1+xn)≥ 1/(n+1)
V={x=(x1,x2,…,xn)|x1+x2+…+xn=1}.证明V是向量空间V2={x=(x1,x2,…,xn)|x€R且x1+x2+…+xn=0},V1={x=(x1,x2,…,xn)|x€R且x1+x2+…+xn=1}.问V1,V2是向量空间,为什么?
均值不等式中的证明函数f(k)=((x1^k+x2^k.xn^k)/n)^(1/k)在k属于R上,单调递增
设x1,x2,.,xn属于R+,且x1^2+x2^2+……+xn^2=1设x1,x2,.,xn属于R+,且x1^2+x2^2+……+xn^2=1,则为什么1/(x1^2)+1/(x2^2)+……+1/(xn^2)≥1
x1、x2∈R,证明|x1|-|x2|≤|x1-x2|
证明|X1+X2+X3+X4+...+Xn+X|>=|X|-(|X1|+|X2|+...+|Xn|)
线性代数题目,对任意实数x1,x2...xn,证明|x1|+...+|xn|
设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn=>1/1+n
(x1+x2+...+xn)^2
已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2X1、X2、X3、...、Xn是正数
对于n个给定实数X1,X2,X3,…,Xn,证明:|X1+X2+X3+…+Xn|≤|X1|+|X2|+|X3|+…+|Xn|
证明伯努利不等式(1+X1)(1+X2)(1+X3.)(1+Xn)>1+x1+x2+.+xn式中X1,X2`.Xn同号且大于-1