如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF(证明思路;取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF)①如图二,如果把“点E是边BC的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:45:07
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF(证明思路;取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF)①如图二,如果把“点E是边BC的
xmoTJUi]$ 4i Ktnl+mکeݨF6uy|mSŽ},IJ%$|ssu8AUH5HnW?>n'jG^AZMⴒd:N;ٯ?ISp!Cb/xrU +8}zlXq;qVUw}w塁7UC:r7OzxXO#wF.vҜm+-o呲30g:Ыw4ZCNc B%7[:dN;4N1F#]uwX&i^kpn:eoȵ׼_n? ,lm6~wp+(ˣ Y~9oY,v/ʶxƌl@9|.*0 rA)Nә*\|eJx˯a?>VQssŏf:/seef1 S,m0)^O,S*L(\6+&kJ08MdRJf3slgy4srRN$)ӔEVsD咂d/(g$e 9K83E3dze. +Vm6C~j# z;l\z @iV(A Ni`4BY*0l!݋^kC#S.[@܍*~ػOw`{3Vq -TXR_8xyI_T Wz:;5*3Be o\1׌YoV/bex7+g%` $U#S9:A崒}5 _!Y> ^בU;0FddP A fݨB:3xS:~'fT4g&

如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF(证明思路;取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF)①如图二,如果把“点E是边BC的
如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF(证明
思路;取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF)
①如图二,如果把“点E是边BC的中点”改为“点E是边BC上(出B、C外)的任意一个点”,其他条件不变,那么结论“AE=EF”仍然成立吗?如果成立,写出证明过程;如不成立,请说明理由.
②如图三,点E是在BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”仍然成立吗?如果成立,写出证明过程;如不成立,请说明理由
(没图呀)

如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF(证明思路;取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF)①如图二,如果把“点E是边BC的

(1)证明:取AB中点M,连接EM,
∵AB=BC,E为BC中点,M为AB中点,
∴AM=CE=BE,
∴∠BME=∠BME=45°,
∴∠AME=135°=∠ECF,
∵∠B=90°,
∴∠BAE+∠AEB=90°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
在△AME和△ECF中

∠MAE=∠CEF    
AM=EC    
∠AME=∠ECF    
   
,
∴△AME≌△ECF(ASA),
∴AE=EF;
(2)成立,
理由是:在AB上截取BM=BE,连接ME,
∵∠B=90°,
∴∠BME=∠BEM=45°,
∴∠AME=135°=∠ECF,
∵AB=BC,BM=BE,
∴AM=EC,
在△AME和△ECF中

∠MAE=∠CEF    
AM=EC    
∠AME=∠ECF    
   
,
∴△AME≌△ECF(ASA),
∴AE=EF.
(3)如图3:AE=EF,理由为:
证明:延长AB到M,使AM=CE,连接ME,
∵AM=CE,AB=BC,
∴AM-AB=CE-BC,即BM=BE,
∴∠BME=45°,
∴∠BME=∠ECF=45°,
又∠AEF=∠ABE=90°,
∴∠MAE+∠AEB=90°,∠CEF+∠AEB=90°,
∴∠MAE=∠CEF,
在△MAE和△CEF中,

∠BME=∠ECF    
AM=CE    
∠MAE=∠CEF    
   
,
∴△MAE≌△CEF(ASA),
∴AE=EF.

已知,如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,求菱形面积 如图已知E、F分别是正方形ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形; 如图,四边形ABCD是正方形,点E是AB的中点,则tan∠ACE= 如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为 请教一道数学题:数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点∠AEF=900,且EF交正方 如图1四边形ABCD是正方形,G是CD边上的一个动点 如图 点e,f分别是矩形abcd边ad和bc上的点,且四边形abfe是正方形,矩形efdc 如图,四边形ABCD是正方形,点E是AB边上的点,BE=1,将△BCE绕点C顺时针旋转90°得到△DCF.已知EF=2√5.求正方形ABCD的边长. 如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (如图 四边形ABCD是正方形 点E F G H分别在边AB BC CD DA上 连接EF GH (1)如果EF=GH 求证EF垂直GH(2)如果EF垂直GH 求证EF等于GH 已知,如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,则∠EAB的度数是 如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE,CE,如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB, 急 如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且如图,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑 如图,四边形ABCD是正方形,点G是BC上任意一点,DE垂直AB于点E,BF垂直AG于点F,当点G如图,四边形ABCD是正方形.点G是BC上的任意一点,DE⊥AG于点E,BF//DE,且交AG于点F.1当G为BC边中点时,探究线段EF与GF之间 已知:如图,四边形ABCD是正方形,点E在BF上,若四边形AEFC是菱形,则∠EAB的度数是多少? 如图:已知四边形ABCD是正方形,四边形ACEF是菱形,点E、F、B在同一直线上,求证:AE、AF三等分∠CAB 四边形ABCD是正方形,点E是边BC的中点(如图1),角AEF=90,EF与正方形外角的平分线CF交于F.求证:AE=EF 如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角∠DCG的平分线,求证AE=EF 如图四边形ABCD是正方形点E是BC的中点角AEF=90度EF交正方形外角平分线CF于F取边AB的中点G连接EG(1)求...如图四边形ABCD是正方形点E是BC的中点角AEF=90度EF交正方形外角平分线CF于F取边AB的中点G连