设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:39:05
xJA_EvWY9+Y< 4C9Up\-F}REMWիw?ۓ//,_ML^.0BcʋOӃϏV@'GLJ>a;ߞ[{gw+M"u[94Mѩv-՝fr4ݲhtn
7~Yy3${<[;E)iG1( R.-N0ƣ)%uY'udJo$*XwN(a&߳'-)ʛDiT c%zgVHTijys&i Aq8'`T 0KeP38ICR[v
`4\[0Y.f
`
设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
设矩阵列向量A=K(1/3,1/2,1,0)为单位向量,则K为?
设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
设向量α=(1,k,1)T为矩阵A=(2,1,1;1,2,1;1,1,2)的逆矩阵A^-1的特征向量,求常数k的取值
设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式 秩为1的矩阵:一定可以分解为列矩阵(向量) 行矩阵(向量)的形式r(A)=1 故设A=αβ^T 然后这样算A^n很方便...秩为1的矩
设α为3维实单位向量,且A=E+kαα^T为正定矩阵,则k的取值范围是
设向量x为n维列向量,x^t*x=1,令a=e-2x*x^t,证明a是正交矩阵
一道矩阵的题目,急!设向量a=(a1,a2,a3)^T ,其中a1不等于0,A=Ek(a^T)a为正交矩阵,其中k不等于0 (用^T来表示转置)第一问是问k,算出来是-2/(a1^2+a2^2+a3^2),没问题.第二问问的是求P使得 (P^-1)AP为对角矩
设A为n阶矩阵,若存在正数k,是线性方程组A^kX=0有解向量α,且A^k-1α≠0.证明:向量组α,Aα,…,A^k-1α线性相关”
求证明 α是单位向量,A=E+kα^T*α,其中k不等于-1,则A为可逆矩阵求证明过程.
设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵(E—2aa^T)^T怎么求?
矩阵及其运算设α,β为三维列向量,矩阵A=α×α∧T+β×β∧T,证明R(A)<=2
设α=(1,1,1)^T(转置),β=(1,0,1)^T(转置),矩阵A=αβ^T(转置),k为正整数,矩阵A的k次方
设α=(1,1,1)^T(转置),β=(1,0,1)^T(转置),矩阵A=αβ^T(转置),k为正整数,矩阵A的k次方
设向量α=(1 2 3 )T β=(3 2 1 )T 矩阵A=αβT,则A的6次方是多少.
设向量α=(1 2 3 )T β=(3 2 1 )T 矩阵A=αβT,则A的6次方是多少.
线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交矩阵