求一个极限:n*(x的n次方根-1),其中n趋于无穷大.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:43:07
求一个极限:n*(x的n次方根-1),其中n趋于无穷大.
x){Ɏ';V=r{fiiT<Ւlgv>[^CM۞Xb[]}Ϧ/xr%l)7DΆJni05ԴU@`EvOvLxԹP65NɫAXcC~S6@=_d'?] 4]COiLAZwŬ+l u bOvz9{=+lm 젡c<]tg ϗ&dwÓO'6ӈ$|

求一个极限:n*(x的n次方根-1),其中n趋于无穷大.
求一个极限:n*(x的n次方根-1),其中n趋于无穷大.

求一个极限:n*(x的n次方根-1),其中n趋于无穷大.
n*(x^(1/n)-1)= (x^(1/n)-1)/(1/n)
x>0且x≠1,x^(1/n)=e^((1/n)*lnx)),(1/n)*lnx)是无穷小量,由无穷小的等价代换x^(1/n)-1=e^((1/n)*lnx))-1 (1/n)*lnx),则极限等于lnx;x=1,极限为零;x=

如图所示

什么呀!