若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:44:25
若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢?
xݒN@_K->K+kCEVhlJ2sWppgܝ9(<=2,4.]fdtS=F}pTA%jvhiXӁ[]dKVhcAJm׮RX9q"O. /rtҟgy_oRHqDA9, _Ra*tP{Fg6fY]S}.BoP= ;I^lBc Gmܛ!|Vw}&

若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢?
若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢?

若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢?
若二元一次不定方程ax+by=c有一组整数解为 (x0,y0)
且 (a,b)=d,则其通解为x=x0+bt/d,y=y0-at/d (t为任意整数)
这是一般情况.
当a,b互素,即(a,b)=1时,即得其通解为x=x0+bt,y=y0-at (t为任意整数)
其实,
ax+by=c的特解为(x0,y0);
ax+by=0的通解为(bt/d,-at/d);
二者线性叠加即得
ax+by=c的通解.前述即是.

不互素就不满足题目条件了

二元一次不定方程定理中:“ax+by=c,若(a,b)=d且c不能被d整除,则该方程无解.”中的(a, 若二元一次不定方程ax+by=c有一组整数解为(x0,y0)且(a,b)=1,则其通解为x=x0+bt,y=y0-at (t为任意整数) 为什么需要ab 互素呢? 求证:“以二元一次不定方程ax+by=c中,(a,b)=1,且x=n,y=m,是ax+by=c的一个解,则它的通解为(接下(接上面)x=n-bk y=m+ak(k为整数)” 不定方程ax+by=c有整数解的充分条件是什么大哥大姐们救命的拜托~~~~~~~ 不定方程ax+by=c在a,b,c满足什么条件时有非负解?RT 三元一次不定方程的求根公式是ax+by+cz=d,求xyz的求根公式,2天后关闭!a、b、c、d是常数 二元一次方程组解 若X=1、Y=2是关于X、Y的方程(ax+by-12)平方+/ay-bx+1/=0的一组解,求a、b的值 二元一次方程组解 若X=1、Y=2是关于x、y的方程(ax+by-12)平方+/ay-bx+1/=0的一组解,求a、b的值 数论:证明:二元一次不定方程ax+by=N,(a,b)=1,a>1,b>1当N>ab-a-b时有非负整数解,N=ab-a-b时则不然. 数论:证明:二元一次不定方程ax+by=N,的非负整数解为[N/ab]或[N/ab]+1,其中a>0,b>0,(a,b)=1. 如何求二元不定方程的互质解的个数?Ax+By AB互质,为什么不定方程AX+BY=1一定有整数解?证明~ 若整系数方程ax+by=c(ab≠0)有整数解,则(a,b)|c,反之,若(a,b)|c,则整系数方程ax+by=c(a≠0)有整数解.其中(a,b)表示a、b的最大公约数,(a,b)|c表示(a,b)整除c.根据这种方法判定下列二元一次方 若二元一次方程组ax+by=4有两个解分别是{x=1,y=-1和{x=2,y=2,问{x=4,y=6是不是原方程的解? 若二元一次方程组ax+by+2=0 有两个解分别是x=1y=-1,x=2y=2,问x=4y=6是不是原方程的解? 在一次二元方程ax的平方+bx+c=0中,若a,b,c满足a+b+c=0,则这个方程必有一个根是 二元一次不定方程16-5A=3B求解, 二元一次不定方程的求根公式如何证明 二元一次方程ax+by=c整数解,abc都是整数,a,b的最大公约数能整除c,则方程有整数解,为什么