∫(-∞,+∞)e^[-(x^2+y^2)/2]dy=与泊松积分有关,答案是{e^[-(x^2)/2]}*√(2π),求详解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:33:36
xJ@_%,IddJ-ĕL-][(U/P
z!7^;,ͺқqs>?nʓz=k6^oc9_TW{Yܩvo/W?GX4l|:4R]n=O~<TS2d?WSteAYQtiϫy4n7 4K:NaqVY_TLٟ\GBPC!P[ecrD ckQv$-%gNK8JnC k-fJ&/zq^lKtRSEıF/bÈ@5-.TfBӆkZUZr HS=v(#Ǯsp]Qn"'Ę52-{/yM{
∫(-∞,+∞)e^[-(x^2+y^2)/2]dy=与泊松积分有关,答案是{e^[-(x^2)/2]}*√(2π),求详解
∫(-∞,+∞)e^[-(x^2+y^2)/2]dy=
与泊松积分有关,答案是{e^[-(x^2)/2]}*√(2π),求详解
∫(-∞,+∞)e^[-(x^2+y^2)/2]dy=与泊松积分有关,答案是{e^[-(x^2)/2]}*√(2π),求详解
∫ <0,+∞>dx ∫ (x,√3 x)e^[-(x^2+y^2)]dy
=∫ <π/4,π/3>dt ∫ (0,+∞)e^(-r^2)rdr
=(π/12)∫ (0,+∞)(-1/2)e^(-r^2)rd(-r^2)
=(π/24)[-e^(-r^2)] (0,+∞) =π/24.
y=(e^x-e^-x)/2
y'-2y=(e^x)-x
∫(0.+∞)dx∫(x.2x)e∧(-y^2)
(2X - Y +E)(2X +Y -E)
y=3^x*e^x-2^x+e求导
xy^2-e^x+e^y=1 求y'
求y''+2y'+y=e^-x/x的通解y''+2y'+y=(e^-x)/x
设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2)) 答案说是E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+y^2)^(1/2)f(x,y)dxdy (积分都是从-∞到+∞)其中f(x,y)是x,y的联合密度函数(一个二元正态
设随机变量X~e(2) Y~e(4),求E(X+Y),E(2X-3Y^2)
(x+y)-(x-y)^3÷(x-y)(x+y)×2y化简e ,
y=(x乘以根号x+3)e^2x ,y=x^x^2+e^x^2+x^e^x+e^e^x ,的导数是多少
y=e^2x+e^(-x)的导数
求Y=【(e^x+e^(-x)】^2的微分,
求反函数y=(e^x-e^-x)/2
设y=[e^x+e^(-x)]^2,求dy
y=2/1(e^x-e^-x)的反函数?
∫(-∞,+∞)e^[-(x^2+y^2)/2]dy=与泊松积分有关,答案是{e^[-(x^2)/2]}*√(2π),求详解
积分∫0 +∞e^xdx/e^2x+1