y=2sin(1/2x+π/3)单调区间求大神解出来RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:38:47
y=2sin(1/2x+π/3)单调区间求大神解出来RT
x)5*07>ߠow O{vƦK?_:Ow=4(&HT]`=@v6Zi}AF 1j 1Y/&=]4j` #tXGQ`OtI O>d҄{?kXb ʧ3f*<\;@\}ӁMM@%ePg Ov/t)H8 oa===luO7N}a4ԩ갰18 16"9ٞEs*ԫ~Œ.Mbv$!,

y=2sin(1/2x+π/3)单调区间求大神解出来RT
y=2sin(1/2x+π/3)单调区间求大神解出来
RT

y=2sin(1/2x+π/3)单调区间求大神解出来RT
2kπ-π/2

y=2sinx的单调递增区间是[-π/2+2kπ,π/2+2kπ](k∈Z)
由复合函数的同增异减性质
则由 -π/2+2kπ ≤1/2 x+π/3≤π/2+2kπ
解得-π5/3 +4kπ≤x≤π/3 +4kπ
所以y=2sin(1/2 x+π/3)的单调递增区间是[-5π/3+4kπ,π/3+4kπ](k∈Z)
y=2sinx的单调递减区间是[π...

全部展开

y=2sinx的单调递增区间是[-π/2+2kπ,π/2+2kπ](k∈Z)
由复合函数的同增异减性质
则由 -π/2+2kπ ≤1/2 x+π/3≤π/2+2kπ
解得-π5/3 +4kπ≤x≤π/3 +4kπ
所以y=2sin(1/2 x+π/3)的单调递增区间是[-5π/3+4kπ,π/3+4kπ](k∈Z)
y=2sinx的单调递减区间是[π/2+2kπ,3π/2+2kπ](k∈Z)
由 π/2+2kπ ≤1/2 x+π/3≤3π/2+2kπ
解得π/3 +4kπ≤x≤7π/3 +4kπ
所以y=2sin(1/2 x+π/3)的单调递减区间是[π/3+4kπ,7π/3+4kπ](k∈Z)

收起