如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:46:54
如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA.
xQN@W 1Q+tn~~!s*#>AŠFIڦ?ӲU1v{=1F&XjX=3 ύ* v k - &'E雾@!K_/o<6d|rbjvn~s`)cyUvz&m~#iVkN /OLTpIG{vCd>-ڀ~ou0r<'Q&فOht4\1۸kc+j#n^GvDN2K+Ō!~-<.0E=Oq'v&1rGwqxIg+t~ξ @瓵dNcMD}er,ܣ_0MM౹?y

如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA.
如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA.

如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA.
证明:
∵D是弧BC的中点
∴弧BD=弧CD
∴∠BAD=∠CAD
∵∠BAD、∠BCD所对应圆弧都为劣弧BD
∴∠BCD=∠BAD
∴∠BCD=∠CAD
∵∠ADC=∠CDE
∴△ADC∽△CDE
∴DC/DE=DA/DC
∴DC²=DE×DA
数学辅导团解答了你的提问,

△DCE和△DAC相似,DC是公共边,弧相等圆周角相等,通过此题复习一下所有三角形相似的6种情形,包括平行型3种和相交型3种

如图,在△ABC中的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,DC.z=证明DC²=DE×DA. 如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC与点E,连结BD.求证:△ABD∽△AEC.最好在每一个步骤后面加括号标明定理感激不尽》》》 如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连结BD.求证:△ABD∽△AEC 如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D(1)求证:AP=AC;(2)若AC=3,求PC的长. 如图,在Rt三角形ABC中,叫C=90度,AC=2,AB=6,圆O是三角形ABC的外接圆,D是弧BC的中点,则BD等于多少像素渣... 如图,在三角形ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD,I为三角形ABC的内心.若AE=6,DE=2,求ID的长 如图,在三角形ABC的外接圆O中.D是弧BC的中点AD交BC于点E连接BD,I为三角形ABC的内心 如图,○O是△ABC的外接圆,AD是△ABC的高,点D是弧BC的中点,求证AE平分∠OAD 如图 在三角形ABC中,AB=AC,圆O是三角形的外接圆,D为弧AC的重点,E是BA延长线上的一点,若角DAE=114°求角CAD的度数 如图在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交三角形ABC的外接圆于点E过点B做圆O的切线交AO的延长于Q,设OQ=9/2,BQ=3倍根号2 (1)求圆O的半径(2)若DE=3/5,求四边形ACEB的周长. 如图 圆o是三角形ABC的外接圆且AB=AC,点D在弧BC上运动,过点D如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运 如图,在四边形ABCD中,∠ABC=∠ADC=90°.若△ABC的外接圆为圆O,试判断点D与圆O的位置关系,说明理由 已知,如图,在△ABC中,I是内心,AI交BC于D,交△ABC的外接圆于点E,且∠B=60°,那么△IEC是等边三角形 如图,⊙O是△ABC的外接圆,已知∠B=60,求∠ACO的度数. )如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么 如图,在△ABC中,E是内心,AE的延长线和△ABC的外接圆相交于D,求证:DE=DB=DC. 如图,圆o是三角形ABC的外接圆 如图,在三角形ABC的外接圆O中,是弧BC的中点,AD交BC于点,连接BD.(1)列出图中所有相似三角形 2)如图,在三角形ABC的外接圆O中,是弧BC的中点,AD交BC于点,连接BD.(1)列出图中所有相似三角形(2)