初二典型数学题、知道的进来看看!如图2,△ABC,O是内角平分线AD/BE/CF的交点.(1)求证:∠BOC=90°+ ½BAC.(2)过O作OG⊥BC于G,求证:∠DOB=∠GOC.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:48:49
初二典型数学题、知道的进来看看!如图2,△ABC,O是内角平分线AD/BE/CF的交点.(1)求证:∠BOC=90°+ ½BAC.(2)过O作OG⊥BC于G,求证:∠DOB=∠GOC.
xTmOP+3m^t%ioaO0mP? QCxQb  )?n|_:2fB{{zJi?0>L ;׍O'bi]ueh\]L1j,滏I211^83&'#Ia>R\=I^~mֶ䚌e۩aU{hU;z+Vpͺ*x`Y%ӆ+O(&^: }\bJbGc>;.vGFrwFә\:;ӚI< MҮ4NkR0@,dq2U/3[,|]\zpMd5R-C,\0`g zrBx0 Gw&Mg[lo{ZGG{baE

初二典型数学题、知道的进来看看!如图2,△ABC,O是内角平分线AD/BE/CF的交点.(1)求证:∠BOC=90°+ ½BAC.(2)过O作OG⊥BC于G,求证:∠DOB=∠GOC.
初二典型数学题、知道的进来看看!
如图2,△ABC,O是内角平分线AD/BE/CF的交点.
(1)求证:∠BOC=90°+ ½BAC.
(2)过O作OG⊥BC于G,求证:∠DOB=∠GOC.

初二典型数学题、知道的进来看看!如图2,△ABC,O是内角平分线AD/BE/CF的交点.(1)求证:∠BOC=90°+ ½BAC.(2)过O作OG⊥BC于G,求证:∠DOB=∠GOC.
BOC=BOD+COD
=BAO+ABO+CAO+ACO
=(BAO+CAO)+ABO+ACO
=BAC+1/2ABC+1/2ACB
=BAC+1/2(ABC+ACB)
=BAC+1/2(180-BAC)
=90+1/2BAC
(2)
BOD=1/2(BAC+ABC)
=1/2(180-ACB)
=90-1/2ACB
COG=90-OCG
=90-1/2ACB

说个思路,
(1)∠BOC=∠ACF+∠BEC=∠ACF+(∠ABE+∠BAC)=∠ACF+∠ABE+∠BAC
=1/2∠ACB+1/2∠ABC+1/2∠BAC+1/2∠BAC
=1/2(∠ACB+∠ABC+∠BAC)+1/2∠BAC
=90+1/2∠BAC
(2) 要想证明 ∠DOB=∠GOC

全部展开

说个思路,
(1)∠BOC=∠ACF+∠BEC=∠ACF+(∠ABE+∠BAC)=∠ACF+∠ABE+∠BAC
=1/2∠ACB+1/2∠ABC+1/2∠BAC+1/2∠BAC
=1/2(∠ACB+∠ABC+∠BAC)+1/2∠BAC
=90+1/2∠BAC
(2) 要想证明 ∠DOB=∠GOC
只需证 ∠OGC+∠OCG=∠OBD+∠ODB
即 90+∠OCG=∠OBD+(∠DAC+∠ACD)
=∠OBD+∠DAC+2∠OCG
=(∠OBD+∠DAC+∠OCG)+∠OCG
=1/2*180+∠0CG
=90+∠OCG
~~~~over~~~

收起

(1)因为∠BOC=∠OBC+∠OAB+∠OAC+∠OCA
且O是内角平分线AD/BE/CF的交点,CA
所以∠OBC+∠OAC+∠OCA=1/2(∠ABC+∠CAB+∠ACB)
所以:∠BOC=90°+ ½BAC
(2)因为∠BOD=1/2(∠BAC+∠ABC)
∠GOC=90°-1...

全部展开

(1)因为∠BOC=∠OBC+∠OAB+∠OAC+∠OCA
且O是内角平分线AD/BE/CF的交点,CA
所以∠OBC+∠OAC+∠OCA=1/2(∠ABC+∠CAB+∠ACB)
所以:∠BOC=90°+ ½BAC
(2)因为∠BOD=1/2(∠BAC+∠ABC)
∠GOC=90°-1/2∠ACB=90°-1/2(180°-∠BAC-∠ABC)= 1/2(∠BAC +∠ABC)
所以:∠DOB=∠GOC。

收起