设数列{bn}满足b1=3,bn=3^nP^n,且Pn+1=Pn+n/3^n+1,若存在实数t,使得数列Cn=[bn-(1/4)]*t/(n+1)+n成等差数列,记数列{Cn*(1/2)^Cn}的前n项和为Tn.证明:3^n*(Tn-1)<bn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:19:13
设数列{bn}满足b1=3,bn=3^nP^n,且Pn+1=Pn+n/3^n+1,若存在实数t,使得数列Cn=[bn-(1/4)]*t/(n+1)+n成等差数列,记数列{Cn*(1/2)^Cn}的前n项和为Tn.证明:3^n*(Tn-1)<bn
xTYOQ+>faKZL$D0,- IN.e (]2Կր{w{NM9}I>e1kCsx }f#mCfc?-yDfx!(8cIޅh7-Ԋ̯lH_) ,X)^׻DQ)i͓jVTcI^ qE, gfRچ: ҳuR̆L _/q{ *H8,ώ|gbְ@vXzNłO‹-X¾-^Y+Tݨ;#0Y ~7Mh9JgfiNM76Yͽmps&X[ne~fL:Guv6p}}c.pgf86#붏7 W'5.L̤ˊZ i

设数列{bn}满足b1=3,bn=3^nP^n,且Pn+1=Pn+n/3^n+1,若存在实数t,使得数列Cn=[bn-(1/4)]*t/(n+1)+n成等差数列,记数列{Cn*(1/2)^Cn}的前n项和为Tn.证明:3^n*(Tn-1)<bn
设数列{bn}满足b1=3,bn=3^nP^n,且Pn+1=Pn+n/3^n+1,若存在实数t,使得数列Cn=[bn-(1/4)]*t/(n+1)+n成等差数列,记数列{Cn*(1/2)^Cn}的前n项和为Tn.证明:3^n*(Tn-1)<bn

设数列{bn}满足b1=3,bn=3^nP^n,且Pn+1=Pn+n/3^n+1,若存在实数t,使得数列Cn=[bn-(1/4)]*t/(n+1)+n成等差数列,记数列{Cn*(1/2)^Cn}的前n项和为Tn.证明:3^n*(Tn-1)<bn
我就提提思路,要是全打出来太费劲了
先求Pn
仿写P(n+1)=Pn+n/3^(n+1)
Pn=Pn-1+n-1/3^n
.
P3=P2+(3-1)/3^3
P2=P1+(2-1)/3^ 到此为止
全相加,消去不少最后得P(n+1)=P1+{数列(n-1)/3^n的第二项到第n+1项和}
然后求数列(n-1)/3^n的第二项到第n-1项和
设数列(n-1)/3^n的前n+1项和为Tn+1=0/3+1/3^2+2/3^3+3/3^4+.+n/3^(n+1)
×1/3
1/3Tn+1=0/3^2+1/3^3+2/3^4+.+n/3^(n-2)
错位相减 2/3Tn+1=您自己减减看
再求出Tn+1,因为T1=0所以结果
就是数列(n-1)/3^n的第二项到第n-1项和
然后Pn就出来了,Bn也跟着出来了
要看看b1是否符合通式,不符要分写
希望你能满意,不明白可以提意见
由于没看懂你的题目,所以百度了一下,找到了
http://zhidao.baidu.com/link?url=HR-45Th6YGPyfLOgwyULoJslY5pkSv2s2L7QTUSX5GaTsojJMM02ZKZkFfehhQgfMQjxI8cz2g96G31tgl0ceK
以上

设数列{bn}满足b1=3,bn=3^nPn,且P(n+1)=Pn+n/3^(n+1) 求数列{bn}的通项公式 数列an=(1/2)^n,数列{bn}满足 bn=3+log4an ,设Tn=|b1|+|b2|+...+|bn|,求Tn . 数列{bn}满足 3bn+1 + 3bn-1 = bn,b1 =1,求{bn}的通项公式 已知数列满足{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标已知数列{bn}满足:b1=1,当n≥2时,bn=(2bn-1)/(bn-1+3),求bn其中,n-1都是b的下标 数列{bn}满足:b1=10,b(n+1)=100*bn^3,求数列{bn}的通项公式bn 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 数列b1=3,bn+1=3bn+2n,求bn通项. 数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn? 已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn...已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn}的前n项和为Sn 已知数列{an}的前n项和Sn=n2+4n(n∈N*),数列{bn}满足b1=1,bn+1=2bn+1(1)求数列{an},{bn}的通项公式;(2)设cn= (an-3)•(bn+1)4,求数列{cn}的前n项和Tn. 数列{bn}满足b(n+1)=2bn+1,n∈N*且b1=3 求{bn}的通项公式 设数列{an},{bn}满足a1=1,b1=0且(高二数学,a(n+1)=2an+3bn且b(n+1)=an+2bn.(1)求证:{an+根号3bn}和{an-根号3bn}都是等比数列并求其公比;(2)求{an},{bn}的通项公式(n均为正整数)是(根号3)bn 已知数列{bn}满足bn=n^2/3^n,证明:bn≤4/9 设数列{an}的前n项和Sn=2(an)-1,数列{bn}满足b1=3,bk+1=ak+bk1.数列{an}的通向公式2.数列{bn}的前n项和 若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n如题, 设数列{an}的前n项和Sn=2an-1(n=1,2,...)数列{bn}满足b1=3,bk+1=ak+bk(k=1.2...)求数列{bn}的前n项和 有关数列的数学题.已知数列{bn}满足b1=1,b2=3,b(n+2)=3b(n+1)-2bn.求证数列{b(n+1)-bn}是等比数列,求{bn}的通项公式. 设数列an,bn分别满足a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+a1*a2*a3...*an=1*2*3*4...*n,b1+b2+b3+...bn=an^2,n属于N+1)求数列an和bn的通项公式