设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (3)在(1)的条件下,设xn是fn(设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(3)在(1)的条件下,设xn是fn(x)在(1/2,1)内的零点,判断数列x2,x3,…,xn的增减性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:47:50
x){nϦnH{Nۊ<
d 7QGNN2S
sV Y@Y-.|{ۓ:@*X64I0NPHPi[+P۞7yڱٴ@;vL0ҩ0yL"yO5,I*ҧ0_`g3bc^P->ٽi{f=ퟖgktCܧz!2:OMڱ!MPSAKHi$ف q;
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (3)在(1)的条件下,设xn是fn(设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(3)在(1)的条件下,设xn是fn(x)在(1/2,1)内的零点,判断数列x2,x3,…,xn的增减性
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (3)在(1)的条件下,设xn是fn(
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(3)在(1)的条件下,设xn是fn(x)在(1/2,1)内的零点,判断数列x2,x3,…,xn的增减性
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (3)在(1)的条件下,设xn是fn(设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(3)在(1)的条件下,设xn是fn(x)在(1/2,1)内的零点,判断数列x2,x3,…,xn的增减性
(1)直接代入:取n=2,将1/2和1代入x,得到f(x1) * f(x2)
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (3)在(1)的条件下,设xn是fn(设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(3)在(1)的条件下,设xn是fn(x)在(1/2,1)内的零点,判断数列x2,x3,…,xn的增减性
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) 设n≥2,b=1,c= -1,证明:fn(x)在区间(1/2,1)内存在零点
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R) (1)设n≥2,b=1,c=-1,证明:设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(12,1)内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[-1,
高手帮忙看下我错在哪:设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R)设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R)(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围; 下面是我做的:即求|f3(x)max-f3(x)min|≤1
设函数fn(X)=x^n+bx+c(n属于N+,b,c属于r)(1)设n>=2,b=1c=-1,证明fn(x)在区间(1/2,1)内存在唯一的零点(2)设n为偶数,f(-1)的绝对值小于等于1,f(1)的绝对值小于等于1,求b+3c的最小值和最大值(3)设n=2,若对
已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为f′n(x),设函数g(x)=f2n-1(x)•fn(1-x),求g(x)的极大值与极小值答案是可求得g′(x),令g′(x)=0,得x1=0,x2=2n−1/3n−1,x
设函数fn(x)=x的n次方+bx+c(n∈N,b,c∈R)(1)设n>=2,b(1)设n>=2,b=1,c=-1,证明fn(x)在区间[0.5,1]内存在唯一的零点(2)设N为偶数,丨f(-1)丨=<1,丨f(1)丨=<1,求b+3c的最小值和最大值(3)
设f(x)=sinπx是[0,1]上的函数,且定义f1(x)=f(x),...fn(x)=f(fn-1(x)),n∈N*,则满足fn(x)=x,x∈[0,1]的x的个数是 A.2n B.2n² C.2的n次方 D.2(2n-1)急盼高手给个较详细的解答,不胜感激啊!
设f1(x)=2/(1+x),设fn+1(x)=f1〔fn(x)〕,an=〔fn(0)-1〕/〔fn(0)+2〕,n∈n*,求设f1(x)=2/(1+x),设fn+1(x)=f1〔fn(x)〕,an=〔fn(0)-1〕/〔fn(0)+2〕,n∈N*,求数列{an}的通项公式
设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根
已知函数f(x)=X/1+lxl,设f1(x)=f(x),fn+1(x)=f【fn(x)】,(n∈N*)(1)写出f2(x)和f3(x)的解析式,并猜想数列{fn(x)}的通项公式(2)判断并证明函数y=fn(x)(n∈N*)的单调性(3)对于no∈N*,若函数y=fno(x)的图像
高中数学-函数和数列的综合(悬赏+10)设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2] (n∈N+)(1) 求数列{an}的通项公式(2) 求T(2n)=(a1)+2(a2)+3(a3)+...+(2n)(a2n),Qn=[4(n^2)+n]/[4(n^2)+4n+1] (n∈N+),试比较 9
设f1(x)=2/(1+x),fn+1(x)=f1[fn(x)]设f1(x)=2/(1+x),设fn+1(x)=f1〔fn(x)〕,an=〔fn(0)-1〕/〔fn(0)+2〕,n∈N*,求数列{an}的2009项
设函数fn(X)=x^n+bx+c(n属于N+,b,c属于r),设n=2,若对任意x1,x2属于[-1,1],有f2(x1)-f2(x2)的绝对值小于等于4,求b的取值范围
已知f0(x)=xe^x,定义fn(x)=f'(n-1)(x) x属于N,试归纳出fn(x)的表达式求fn(x)的极小值,点Pn(Xn,yn)
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的图像恒过定点 .
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的图像恒过定点 .设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的图像恒过定点 .
幂函数 已知函数f(x)=(xn-x-n)/(xn+x-n)(x>0,n∈N*),判断f(x)是增函数还是减函数