求费尔马大定理全解析

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:46:21
求费尔马大定理全解析
x\[SI+z v[/DvCO 07c`cҭ*=/wdJ% 3ݳ/aa)+sK7>s/B=5gnB݃w7#?kU~yqz*xn/];3?g{4M4/3TOΧ=}ibwM\_{rdY,6k9g3[¡[EdZ4&J>fm {wZO=#fjtqB}ol7]uʏ7/P;( DFq4Vd]n<Ϲ ėvNuϹ/7`g>]~T]WU?CGip$&KhiBb$( <2x]M3 ȱ)a4·Z؀J\YƦ.gMSip;p/ ~̌kCtcoTv[VfqEݶ.[Ί!RV#F q٘Z UfMU S.1gk<~4k'dЗ;ecʛ NU)ʔ弿9f fS96Uٰ{0]K98s'չ}6]$(W5>|sR^Gch娱 e Zkwt:٘ dmA9Yh6JKp}é_`y҉lw 9tl!{i;">sNjk%k~6TsK97Vaoe8^'9bА4I>Də=ӣna yWJTךS/7~dl7fm*vϰ1U4|]PD?I{U 4zb82<+#i(%7fXL̊zX̀}̝;-nU.6{܅@X6 {*G~)i#DoZ%o4 қ3ւ0k3S#3ZEqg!0])Pre,mBaN9BVCB^'vry\.PhC+LQn uC(TTskaxUʓV0%?Myg? C=c$iHܽtoYnC_kc7_b Qjf@LMDvSdʌtn2,|.:6%A|{G)#ʌfmS{qnl8.piEIY+qs-RS(TXpD*Ê 2 0~adJaX(z$F` x3(yˆRI39i~nͽ|. O b䭳DPL׋n\?J c]p>+S$qdS#5Fb8DacAxCp;+CLnwoqP׹]T*<Nޮ~FAS;NPm=.cf:f13YEt,1*cF!\LznRQk$TI~\'KQ K;;o`VgdFB(aHR掜ӂgL.} ّe9I?y &r-CIӼ-jHBT,c`&<yFF"̄@ h dO5YBAAYsw7)?JI,41.$(@zQXEF;w$a+@2DcTR sp~bVFNklQkd'T♕ai$ya%qY=_{)/Ɠ>هnMǔIi8Yy$f6@; R G*:}E"hK C( { A%5Tt4f)^HS$s_/33@j14.^MGbp脊ɲTrpa= t3,KPWMYTOd¯,=ӔlFУip =t( xDn 6VQBd# 3eBeC({r!!ЁWT ,:jPu#Ta|0L '󘹔`昣y=rwrݵ:BDrGPIk!e{bs렍/8ҜCܹQDٛg]R$֮HO.Cic" ?9IL]kHf5( =%e ^(<҂CRGH ֺh$m:_цcaօB'ŵxW2(z!M%$D]h1wrψ@Q2 sy7k'z:%Um/+UJx6pѯQZB;,F_m`|ț̴U}\L7[W}]Q{ rsL$ocF~UMZZ\ZG{vOKicPSFgk̎я:s7Ng0% dzpFh€xh['X(Kj[d-FI" â5nr<&1\hGJv/WEG;ؒZv8#ם$?cz׬evX.zt e6ax2<|'*:nh/@ AEIm r鷭fmS3 Uw*5SQݏ_]U8$ۇ>4.>P~/=7~r? ?G]6ևr@m6Q`WxhLdko<&'Z7,Cx;GWR܏N@9!wx)r"ؼ}i_/:ɀQgnsz$뽼w V$= 32bgZ+fXLB[f{#(X^jW1L5J]jl5xD;_79 R'_5V+sARMUz ]Z<2k6Bǃ( ;}ʡwq6ORRi~W76m $^ ]4n'HwR1vva r_wf]پ)4yA.3zC%H27?#Lx@\k@Iș [HmR6&gb|ZMH am! A ~RO+r!0m!=N05g>J+r@$(kb(E:d"I! 97]Z^{/Ab/y r&3?tG=?،-y6 o#ӞL.{ҫ ^H?TOE}AYf(7HsfO[ ~|$Pn>A -{Oo\ }ͫKӛ*'sD@G0ƬD^Ku:KQ.tˣΨM|eCoގ6Qp6oW~EF6jPɲ,tۇ3#z\Zb\PVMT0؋긤vNż=slҊ0L'D\">hŻB"P;۟E|P3T0µ>$A=o%š-Rи{7U-!T.fZ /i^B][tۨ$AOf ~| St°ҠqzAB##:?Aަ'w/XRK=ü1_cs)m 9vQNP2PbXߢ Ti>>d ;l}mؗv֯# E:̶g6K>}feS裞^xj<BZ-z1m~Q?~fegCRph&`G:m: ‘88ܘ5PL'#2PC_o܈F K/9ăR󗵃@) dz,RfGrɊ ˾%+Jh>+2O /CNdկ+z'ACPD]Ou/Cg* `P%sA#=(AH%D("Mh:nGm3D6c Z|WNVO?x nf4o#m_J%~kJDTFNz'WbJh\dYÕ W#i2y"`.y2Oĺ.X5HK<䉡 /,8!_Ƈ|ȗy:PSfHh&AtTt'ݣz~^_ǿ6f~klDc?xI7߫[?Խ#jYgaVmn/tdkX_n+l6LbGvq.m) qZrGx@[I{|"-[nмYjqF+yΏwbn`Vߋ85kZv ܘӐP9 %]RwW/|ertj/4D~7r1U{#&VaW^9;oJ4W&> c$|xf\Yt0Ӿ2VOʫ3_u'f_5>bĆe$~c@#Lyy'X|04-o!. !j9@[<ʉ<]{~ޥN/tpnӽv0Άtmս?:@o$ߏE^㓛N,FGrdB.ڋ䑽km $ʔ JGsp$hyt)*Ҟ=v~.$?!aZA과+OSn]̈\|oM z%E-SpFI,<<}Y\?kVQ"D[ h˂9qu&"t$V4M@9Zf ] !38zl]ع0goVBы4+ӲԼGd["uxT7}ث Dm"!8v=ګU@ԫOH,ɅfQE ]ٵ9Z2KMپ$ ^j#sB7؞Gt;ޞy|.EN<'= gFT7F)8+0;¡\ýwnFEMy$hCsNR#ߒ(j3nϕe:KiթJ A`!Rb[ O۫T#TDn\H&t 3PjEz]/*1e@b|%P??ݺStsE]9B {;,&)nۻ'2v$aa?DyC_r/80EJfk5/J[vcsUy|Շ8b\b@cq3@Q["o؅#dz[!gm>G@OK`Z; fkjk^AFɨ^DX=?

求费尔马大定理全解析
求费尔马大定理全解析

求费尔马大定理全解析
对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议.本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值.本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题.
关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式
引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点.并声称自己当时进行了绝妙的证明.这就是被后世人称为费马大定理的旷世难题.时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是.
本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明.
定义1.费马方程
人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数.
在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶.当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支.
定义2.增元求解法
在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算.我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法.
利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单.
下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值.
一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则”
定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件:
a≥3
{ b=(a^2-Q^2)÷2Q
c= Q+b
则此时,a^2+b^2=c^2是整数解;
证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形:
Q2 Qb
其缺口刚好是一个边长为b的正方形.补足缺口面积b^2后可得到一个边长
Qb
为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长.
故定理1得证
应用例子:
例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解?
取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到:
a= 15
{ b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112
c=Q+b=1+112=113
所以得到平方整数解15^2+112^2=113^2
再取a为15,选增元项Q为3,根据定a计算法则得到:
a= 15
{ b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36
c=Q+b=3+36=39
所以得到平方整数解15^2+36^2=39^2
定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解.
二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则”
定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解.
证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c;
b 2b
3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c;
3b 4b
3a、3b、3c;4a、4b、4c… na、nb、nc都是整数.
故定理2得证
应用例子:
例2.证明303^2+404^2=505^2是整数解?
解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计
4
算法则,以直角三角形 3×101 5×101 关系为边长时,必有
4×101
303^2+404^2=505^2是整数解.
三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则”
3a + 2c + n = a1
(这里n=b-a之差,n=1、2、3…)
定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解.
证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有:
a1=3×3+2×5+1=20 这时得到
20^2+21^2=29^2 继续利用公式计算得到:
a2=3×20+2×29+1=119 这时得到
119^2+120^2=169^2 继续利用公式计算得到
a3=3×119+2×169+1=696 这时得到
696^2+697^2=985^2

故定差为1关系成立
现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有:
a1=3×21+2×35+7=140 这时得到
140^2+147^2=203^2 继续利用公式计算得到:
a2=3×140+2×203+7=833 这时得到
833^2+840^2=1183^2 继续利用公式计算得到:
a3=3×833+2×1183+7=4872 这时得到
4872^2+4879^2=6895^2

故定差为7关系成立
再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有:
a1=3×387+2×645+129=2580 这时得到
2580^2+2709^2=3741^2 继续利用公式计算得到:
a2=3×2580+2×3741+129=15351 这时得到
15351^2+15480^2=21801^2 继续利用公式计算得到:
a3=3×15351+2×21801+129=89784 这时得到
89784^2+89913^2=127065^2

故定差为129关系成立
故定差n计算法则成立
故定理3得证
四,平方整数解a^2+^b2=c^2的a值奇偶数列法则:
定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立;
(一) 奇数列a:
若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是:
a=2n+1
{ c=n^2+(n+1)^2
b=c-1
证:由本式条件分别取n=1、2、3 … 时得到:
3^2+4^2=5^2
5^2+12^2=13^2
7^2+24^2=25^2
9^2+40^2=41^2
11^2+60^2=61^2
13^2+84^2=85^2

故得到奇数列a关系成立
(二)偶数列a:
若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是:
a=2n+2
{ c=1+(n+1)^2
b=c-2
证:由本式条件分别取n=1、2、3 … 时得到:
4^2+3^2=5^2
6^2+8^2=10^2
8^2+15^2=17^2
10^2+24^2=26^2
12^2+35^2=37^2
14^2+48^2=50^2

故得到偶数列a关系成立
故定理4关系成立
由此得到,在直角三角形a、b、c三边中:
b-a之差可为1、2、3…
a-b之差可为1、2、3…
c-a之差可为1、2、3…
c-b之差可为1、2、3…
定差平方整数解有无穷多种;
每种定差平方整数解有无穷多个.
以上,我们给出了平方整数解的代数条件和实践方法.我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解.证明如下:
我们首先证明,增比计算法则在任意方次幂时都成立.
定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立.
证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,
得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m
原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m)
两边消掉 n^m后得到原式.
所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数.
故定理5得证
定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数.
证:取定理原式a^m+b=c^m
取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m
原式化为: n^m(a^m+b)=n^mc^m
两边消掉n^m后得到原式.
由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数.
所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立.其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数.
故定理6得证
一元代数式的绝对方幂与绝对非方幂性质
定义3,绝对某次方幂式
在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式.例如:n^2+2n+1,n^2+4n+4,
n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式.
一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项.
定义4,绝对非某次方幂式
在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式.例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式.
当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻.
一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项.
推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数.例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2;
推理:不含方幂项的一元代数式对任何方幂没有唯一性.2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 ……
证明:一元代数式存在m次绝对非方幂式;
在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果.未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系.这就是一元代数式的代数公理.即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值.利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类.
当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数.在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行.因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关.这种关系是:
(n+1)^3-3n= n^3+3n^2+1
(n+1)^3-3n^2= n^3+3n+1
(n+1)^3-n^3=3n^2+3n+1
所以得到:当取n=1、2、3、4、5 …
n^3+3n^2+1≠(n+1)^3
n^3+3n+1≠(n+1)^3
3n2+3n+1≠(n+1)^^3
即这3个代数式的值都不能等于(n+1)^3形完全立方数.
当取n=1、2、3、4、5 …时,(n+1)^3=n^3+3n^2+3n+1的值是从2开始的全体整数的立方,而 小于2的整数只有1,1^3=1,当取n=1时,
n^3+3n^2+1=5≠1
n^3+3n+1=5≠1
3n^2+3n+1=7≠1
所以得到:当取n=1、2、3、4、5 …时,代数式n^3+3n^2+1,n^3+3n+1,3n^2+3n+1的值不等于全体整数的立方数.这些代数式是3次绝对非方幂式.
由以上方法我们能够证明一元代数式:n^4+4n^3+6n^2+1,n^4+4n^3+4n+1,n^4+6n^2+4n+1,4n^3+6n^2+4n+1,在取n=1、2、3、4、5 …时的值永远不是完全4次方数.这些代数式是4次绝对非方幂式.
能够证明5次方以上的一元代数式(n+1)^m的展开项在保留常数项的前提下,锁定其中的任意m项后,可得到m个不同的一元代数式,这m个不同的一元代数式在取n=1、2、3、4、5 …时的值永远不是完全m次方数.这些代数式是m次绝对非方幂式.
现在我们用代数方法给出相邻两整数n与n+1的方幂数增项差公式;
2次方时有:(n+1)^2-n^2
=n^2+2n+1-n^2
=2n+1
所以,2次方相邻整数的平方数的增项差公式为2n+1.
由于2n+1不含有方幂关系,而所有奇数的幂方都可表为2n+1,所以,当2n+1为完全平方数时,必然存在n^2+(2√2n+1)^2=(n+1)^2即z-x=1之平方整数解关系,应用增比计算法则,我们即可得到z-x=2,z-x=3,z-x=4,z-x=5……之平方整数解关系.但z-x>1的xyz互素的平方整数解不能由增比法则得出,求得这些平方整数解的方法是:
由(n+2)^2-n^2=4n+4为完全平方数时得出全部z-x=2的平方整数解后增比;
由(n+3)^2-n^2=6n+9为完全平方数时得出全部z-x=3的平方整数解后增比;
由(n+4)^2-n^2=8n+16为完全平方数时得出全部z-x=4的平方整数解后增比;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,我们可得到整数中全部平方整数解.
所以费马方程x^n+y^n=z^n在指数为2时成立.
同时,由于所有奇数的幂方都可表为2n+1及某些偶数的幂方可表为4n+4,6n+9,8n+16 …… 所以,还必有x^2+y^n=z^2整数解关系成立.
3次方时有:(n+1)^3-n^3
=n^3+3n^2+3n+1-n^3
=3n^2+3n+1
所以,3次方相邻整数的立方数的增项差公式为3n^2+3n+1.
由于3n^2+3n+1是(n+1)^3的缺项公式,它仍然含有幂方关系,是3次绝对非方幂式.所以,n为任何整数时3n^2+3n+1的值都不是完全立方数,因而整数间不存在n^3+(3√3n^2+3n+1 )^3=(n+1)^3即z-x=1之立方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之立方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些立方费马方程式的方法是:
由(n+2)^3-n^3=6n2+12n+8,所以,n为任何整数它的值都不是完全立方数;
由(n+3)^3-n^3=9n2+27n+27,所以,n为任何整数它的值都不是完全立方数;
由(n+4)^3-n^3=12n2+48n+64,所以,n为任何整数它的值都不是完全立方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程3次方关系经过增比后将覆盖全体整数.
所以费马方程x^n+y^n=z^n在指数为3时无整数解.
4次方时有;(n+1)^4-n^4
=n^4+4n^3+6n^2+4n+1-n^4
=4n^3+6n^2+4n+1
所以,4次方相邻整数的4次方数的增项差公式为4n^3+6n^2+4n+1.
由于4n^3+6n^2+4n+1是(n+1)^4的缺项公式,它仍然含有幂方关系,是4次绝对非方幂式.所以,n为任何整数时4n^3+6n^2+4n+1的值都不是完全4次方数,因而整数间不存在n^4+(4√4n3+6n2+4n+1)^4=(n+1)^4即z-x=1之4次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之4次方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些4次方费马方程式的方法是:
由(n+1)^4-n^4=8n3+24n2+32n+16,所以,n为任何整数它的值都不是完全4次方数;
由(n+1)^4-n^4=12n3+54n2+108n+81,所以,n为任何整数它的值都不是完全4次方数;
由(n+1)^4-n^4=16n3+96n2+256n+256,所以,n为任何整数它的值都不是完全4次方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程4次方关系经过增比后将覆盖全体整数.
所以费马方程x^n+y^n=z^n在指数为4时无整数解.
m次方时,相邻整数的方幂数的增项差公式为:
( n+1)^m-n^m
=n^m+mn^m-1+…+…+mn+1-n^m
=mn^m-1+…+…+mn+1
所以,m次方相邻整数的m次方数的增项差公式为mn^m-1+…+…+mn+1.
由于mn^m-1+…+…+mn+1是(n+1)^m的缺项公式,它仍然含有幂方关系,是m次绝对非方幂式.所以,n为任何整数时mn^m-1+…+…+mn+1 的值都不是完全m次方数,因而整数间不存在n^m+(m√mn^m-1+…+…+mn+1)^m =(n+1)^m即z-x=1之m次方整数解关系,由增比计算法则可知,也不存在z-x=2,z-x=3,z-x=4,z-x=5……之m次方整数解关系.但z-x>1的xyz互素的费马方程式不能由增比法则表出,表出这些m次方费马方程式的方法是:
由(n+2)^m-n^m=2mn^m-1+…+…+2^m-1 mn+2^m,所以,n为任何整数它的值都不是完全m次方数;
由(n+3)^m-n^m=3mn^m-1+…+…+3^m-1 mn+3^m,所以,n为任何整数它的值都不是完全m次方数;
由(n+4)^m-n^m=4mn^m-1+…+…+4^m-1 mn+4^m,所以,n为任何整数它的值都不是完全m次方数;
……
这种常数项的增加关系适合于全体整数,当取n=1、2、3 … 时,费马方程m次方关系经过增比后将覆盖全体整数.
所以费马方程x^n+y^n=z^n在指数为m时无整数解.
所以费马方程x^n+y^n=z^n在指数n>2时永远没有整数解.

至今把分和题拿出来我帮你证啊

费尔马大定理
费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边...

全部展开

费尔马大定理
费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a+b=c是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。

收起