P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,向量PF1*PF2最大值的范围是[c^2,3c^2],则该椭圆的离心率的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:25:05
P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,向量PF1*PF2最大值的范围是[c^2,3c^2],则该椭圆的离心率的取值范围
xRKK@+#'j̼}9uhdPa4K-. 1g]^q<^L uM$J0V$N cLb7 IJ!@ YGc]kŰQ4I,,P]C7]^#-(d=mjя8 >hCD޳

P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,向量PF1*PF2最大值的范围是[c^2,3c^2],则该椭圆的离心率的取值范围
P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,向量PF1*PF2最大值的范围是[c^2,3c^2],则该椭圆的离心率的取值范围

P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,向量PF1*PF2最大值的范围是[c^2,3c^2],则该椭圆的离心率的取值范围
假设椭圆焦点在x轴上,a>b>0
通过画图不难发现:当P位于椭圆短轴顶点时,∠APB最大.
所以如果椭圆上存在一点P,使∠APB=120,那么当P位于短轴顶点时,必须满足∠APB>=120,即∠APO>=60
所以tan∠APO=a/b>=√3
b^2=a^2-c^2<=a^2/3
所以 c^2<=2a^2/3
即 e^2<=2/3
所以椭圆离心率的取值范围:(0,√6/3]
很高兴为你解决问题!

1/2≤e≤(√2)/2

一道椭圆的题,已知椭圆x^2/a^2+y^2/b^2=1 (a>b>0)A B是 椭圆上两点,线段AB的垂直平分线与X轴相交与P( x0,0)证明:|x0| 已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆短轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的斜率之积 如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点P向x轴作垂线,恰好通过椭圆如图所示,从椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点P向x轴作垂线,恰好通过椭圆的左焦点F1,A是椭圆与x轴正半轴的焦点,B是y轴与 1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离 设F1,F2是椭圆x^/a^2+y^/b^2=1的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值 关于椭圆的方程 已知F1,F2是椭圆x^2/a^2+y^2/b^2=1的两个焦点,若椭圆上有一点P,使P1垂直于PF2,试确定b/a的取值范围 F1,F2分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点,点P在椭圆上,若三角形POF2是正三角形,则椭圆的 从椭圆x^2/a^2+y^2/b^2=1(a大于b大于0)上一点P向X轴作垂线,垂足卫左焦点F1.A从椭圆x^2/a^2+y^2/b^2=1(a大于b大于0)上一点P向X轴作垂线,垂足恰为左焦点F1。A是椭圆与X轴正半轴的交点。B是椭圆与Y 若F1F2是椭圆X^2/a^2+Y^2/b^2=1的两个焦点,点AB是椭圆与X轴的两个交点,P是椭圆上的任意一点,则以PF1为...若F1F2是椭圆X^2/a^2+Y^2/b^2=1的两个焦点,点AB是椭圆与X轴的两个交点,P是椭圆上的任意一点,则 已知点P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点…已知点P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,F1、F2是椭圆的两个焦点,且椭圆上存在一点P使∠F1PF2=60°1.求椭圆离心率的取值范围2.求△PF1F2的面 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与抛物线y^2=2px(p>0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为 椭圆切线方程过椭圆 x^2/a^2+y^2/b^2=1 上任一点 P(x0,y0)的切线方程是x0*x/a^2+y0*y/b^2=1 如何推导的? 已知P是椭圆x^2/a^2 + y^2 =1(a>b>0)的一动点,且与p椭圆长轴两顶点连线的斜率已知P是椭圆x^2/a^2 + y^2 =1(a>b>0)的一动点,且与p椭圆长轴两顶点连线的斜率之积为-1/2,则椭圆离心率为 从椭圆 x^2/a^2+Y^2/b^2(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB‖OP ,|F1A|=根号10+根号5,求此椭圆方程 已知椭圆x^2/8+y^2/2=1,点P是椭圆在第一象限内的一点,过点p做椭圆的切线,若切线已知椭圆x^2/8+y^2/2=1,点P是椭圆在第一象限内的一点,过点p作椭圆的切线,若切线分别交两坐标轴于A,B两点,O为坐标 椭圆C的方程为y^2/a^2+x^2/b^2=1(a>b>0),A是椭圆c的短轴左顶点,过A作斜率为-1...椭圆C的方程为y^2/a^2+x^2/b^2=1(a>b>0),A是椭圆c的短轴左顶点,过A作斜率为-1的直线交椭圆为B点,点P(1,0),且BP平行于y轴,三 点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方...点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴 如图已知过椭圆x^2/a^2+y^2/b^2(a>b>0)的左顶点A(-A,0)作直线l交y轴于点P,叫椭圆于点P交椭圆于点Q,若△AOP是等腰三角形,且向量PQ=2向量QA,则椭圆的离心率为