1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:26:31
xR=OA+ʫ${DJrA#H$!B"%r܁ʿ~Nyof͘e$쉷{)^Ƙui
1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离
1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值
2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离心率
1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离
1.
第一题直接有结论
p点是短半轴端点时
角p最大
tanp/2=a/b
所以tanp=2ab/(b^2-a^2)
p=arctan[2ab/(b^2-a^2)]
2.
设f1p=x
因为角P=60度
所以f2p=2f1p=2x
f1f2=根号3x=2c
x=2c/根号3
2a=f1p+f2p=3x=2根号3c
e=c/a=1/根号3
1.已知P点是椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)上任意一点 F1 F2是椭圆的两个焦点,求角P的最大值2.过椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P点,F2为右焦点,弱角P=60度,求椭圆的离
已知点P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点…已知点P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点,F1、F2是椭圆的两个焦点,且椭圆上存在一点P使∠F1PF2=60°1.求椭圆离心率的取值范围2.求△PF1F2的面
已知点A(0,1)是椭圆x^2+4y^2=4上的一点,P是椭圆上的动点则弦AP最大值
已知椭圆x^2/8+y^2/2=1,点P是椭圆在第一象限内的一点,过点p做椭圆的切线,若切线已知椭圆x^2/8+y^2/2=1,点P是椭圆在第一象限内的一点,过点p作椭圆的切线,若切线分别交两坐标轴于A,B两点,O为坐标
已知点A(0,1)是椭圆x^2+4y^2=4上的一点,P是椭圆上的动点,当弦AP的长度最大时,点P的坐标是?
已知点A(1,1),F是椭圆5X^2+9Y^2=45的左焦点,点P是该椭圆上的动点,则|PA|+|PF|的最小值为?(2)|PA|+3/2|P
已知点A(1,1),而且F1是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上任意已知点A(1,1),而且F1是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上任意一点,求|PF1|+|PA|的最小值和最大值
已知P是椭圆x^2/a^2 + y^2 =1(a>b>0)的一动点,且与p椭圆长轴两顶点连线的斜率已知P是椭圆x^2/a^2 + y^2 =1(a>b>0)的一动点,且与p椭圆长轴两顶点连线的斜率之积为-1/2,则椭圆离心率为
已知动点P(X,Y)轨迹是椭圆,且满足a√((x-2)^2+(y-1)^2)=|3x-10
如图已知过椭圆x^2/a^2+y^2/b^2(a>b>0)的左顶点A(-A,0)作直线l交y轴于点P,叫椭圆于点P交椭圆于点Q,若△AOP是等腰三角形,且向量PQ=2向量QA,则椭圆的离心率为
求两道几何数学题1.已知点A(-1,2),点B(2,3),点P是直线y=x-2上的一点,满足∠APB最大,求点P的坐标及∠APB的最大值.2.已知椭圆 x^2/4 + y^2/3 =1 内有一点P(1,-1),F是椭圆的右焦点,在椭圆上有一点M
已知F(1,0)是中心在原点的椭圆x^2/m+y^2/8=1的一个焦点,P是椭圆上的点,定点A(2,1)在椭圆内求|PA|+|PF|的最小值
已知点A(3,2),B(-4,0),点P是椭圆x^2/25+y^2/9=1上一点,则|PA|+|PB|的最大值
已知椭圆x^2+2y^2=1,点A(-1,0).过A点做直线交椭圆于P,Q.求证:PQ恒过定点
P是椭圆x^2/2+y^2=1上的一个动点,已知A(a,0),a属于R,求|PA|的最小值的表达
已知p是椭圆2x^2+3y^2=6上的点,则p到该椭圆的一个焦点的最短距离是?
已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA⊥pF求P的坐标 椭圆这一类型的怎么解 理解记忆
已知椭圆方程为x^2*9+y^2/4=1,在椭圆上是否存在点P(x,y)到定点A(a,0))(其中0