导数题,求详细解答

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:38:35
导数题,求详细解答
xT[oE+TMZfdHTU3[hb ҫS` %QZFBQJ.)w`!胕=8v^gxse%gKEki5`pVҭ&x ȇ{ҺMosU#tx~u3DH Wo5ks鵺b3}hX3T#,'net q>Q7H%"ĉ-IڽɓƁMo+2sHKeNEe09AyxLVj‹ JP(LjItwv(-߲-;Ix%Y]MG  wDi:r@`|C[ԽQX EGQG'\Idf[Ȧ"U_<hBɫ}G/=xyBr FjrmH=Ag)_6R.hY_?#g$feLFToQ&DBT^.H[):EN  \x.zx|v[J_J*oƩNFR[RNzT??]

导数题,求详细解答
导数题,求详细解答

 

导数题,求详细解答
f(x)=x³+bx²+cx+d过(0,2),得d=2
f'(x)=3x²+2bx+c
M(-1,f(-1))为切点,得 f'(-1)=3-2b+c=6 (切线斜率=6)即-2b+c=3
f(-1)=-1+b-c+2=-6+7=1 (M点也在切线y=6x+7上),即b-c=0
由上两式联立,得b=-3,c=-3
∴f(x)=x³-3x²-3x+2
f'(x)=3x²-6x-3=3(x²-2x-1)=3(x-1)²-6
f''(x)=6x-6=6(x-1)
f'(x)=0时,x=1±√2
f''(1+√2)>0,此点有极小值
f''(1-√2)

ƒ(x) = x³ + bx² + cx + d
图像过点P(0,2) ==> ƒ(0) = 2 ==> d = 2
将点M代入直线方程中得:6(- 1) - ƒ(- 1) + 7 = 0 ==> ƒ(- 1) = 1
将点M代入曲线方程得:ƒ(- 1) = - 1 + b - c + 2 = b - c...

全部展开

ƒ(x) = x³ + bx² + cx + d
图像过点P(0,2) ==> ƒ(0) = 2 ==> d = 2
将点M代入直线方程中得:6(- 1) - ƒ(- 1) + 7 = 0 ==> ƒ(- 1) = 1
将点M代入曲线方程得:ƒ(- 1) = - 1 + b - c + 2 = b - c + 1
即b - c + 1 = 1 ==> b = c
ƒ'(x) = 3x² + 2bx + c
切线方程的斜率 = - A/B = - 6/(- 1) = 6
在x = - 1处的斜率ƒ'(- 1) = 3 - 2b + c
即3 - 2b + c = 6 ==> c - 2b = 3
b - 2b = 3 ==> - b = 3 ==> b = - 3 = c
所以ƒ(x) = x³ - 3x² - 3x + 2
ƒ'(x) = 3x² - 6x - 3
令ƒ'(x) = 0 ==> 3x² - 6x - 3 = 0 ==> x = 1 - √2 或 x = 1 + √2
ƒ''(x) = 6x - 6
ƒ''(1 - √2) = - 6√2 < 0,取得极大值ƒ(1 - √2)
ƒ''(1 + √2) = 6√2 > 0,取得极小值ƒ(1 + √2)
当x < 1 - √2时ƒ'(x) > 0,递增
当1 - √2 < x < 1 + √2时ƒ'(x) < 0,递减
当x > 1 + √2时ƒ'(x) > 0,递增
∴递增区间:(- ∞,1 - √2]U[1 + √2,+∞)
∴递减区间:[1 - √2,1 + √2]

收起