求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 12:43:55
求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex
xUNQޜԶi#F`bbi_RqX0U"hlU. OB 묳O|&A|'t`-]R9#ާKU忒tL 3Sf[OSDI}al8M6J!t%e`JrkZXޟTLՐ 56ZUESϐ>i Qq[Go;[, 1pL_4E{p*,zݫpF ,زs_G mf*mL*PtLL>Gw[ї2JR-źzfQzcFhqBIKYF`;8XXNk̍LB%^ɼnZ<8!Z.ŽC׸(.TQ8qL2R'*Un_mg,U _aX^^.{;Yؿ٤9B$k|@ŒGqR6W),:ćPЌH7ؒͬ4\PBI vv}ZrVy?Oi+{m.LrʬcMqj*S?@.X{ Iz>?y80/<tx<C|<.x

求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex
求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex

求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex
即是证明 lnx+2/(ex)>1/(e^x)恒成立
令f(x)= lnx+2/(ex),y(x)=1/(e^x) (0,+∞)
y(x)'=-1/(e^x)
对f(x)求导,并令f(x)'≥0:
f(x)'=1/x -2/(ex^2)=(ex-2)/(ex^2)≥0
解得:
增区间为:[2/e,+∞)
减区间为:(0,2/e]
故:f(x)min=f(2/e)=ln2
y(2/e)=1/[e^(2/e)]≈0.479y(a)
又因为在该区间上,limx~0[f(x)]=+∞>limx~0[y(x)]=1
故可得到在x~[2/e,+∞)上,也有:
f(x)= lnx+2/(ex)>y(x)=1/(e^x)
因此综上可得:
在x~(0,+∞)上,恒有lnx+2/(ex)>1/(e^x),即是恒有lnx>1/(e^x)-2/ex
原式得证

即是证明 lnx+2/(ex)>1/(e^x)恒成立
令f(x)= lnx+2/(ex), y(x)=1/(e^x) x~(0,+∞)
y(x)'=-1/(e^x)
对f(x)求导,并令f(x)'≥0:
f(x)'=1/x -2/(ex^2)=(ex-2)/(ex^2)≥0
解得:
增区间为:[2/e,+∞)
减区间为:(...

全部展开

即是证明 lnx+2/(ex)>1/(e^x)恒成立
令f(x)= lnx+2/(ex), y(x)=1/(e^x) x~(0,+∞)
y(x)'=-1/(e^x)
对f(x)求导,并令f(x)'≥0:
f(x)'=1/x -2/(ex^2)=(ex-2)/(ex^2)≥0
解得:
增区间为:[2/e,+∞)
减区间为:(0,2/e]
故:f(x)min=f(2/e)=ln2
y(2/e)=1/[e^(2/e)]≈0.479分析:
用图像法可知,在x~[2/e,+∞)上,f(x)是单调递增的,y(x)在整个定义域内都是单调递减的。由于有:
y(2/e)因此可得到,在区间x~[2/e,+∞)上,f(x)>y(x)恒成立。
故现在只需分析x~(0,2/e]这个区间了。
对f(x)和y(x)分别去趋近于0的极限,得到:
limx~0[f(x)]=limx~0[lnx+2/(ex), ]=+∞
limx~0[y(x)]=limx~0[1/(e^x) ]=1
在区间x~[2/e,+∞)上,令f(x)'=y(x)',并设解为a,可以得到:
a~(6/5e,4/3e)
联系图像,且f(x)'在区间x~[2/e,+∞)上的减小趋势大于y(x)'的减小趋势,则有:
f(a)>y(a)
又因为在该区间上,limx~0[f(x)]=+∞>limx~0[y(x)]=1
故可得到在x~[2/e,+∞)上,也有:
f(x)= lnx+2/(ex)>y(x)=1/(e^x)

收起

求证,对一切x∈(0,正无穷),都有lnx>1/e^x-2/ex 数学,求导类证明问题对一切x∈(0,+无穷),都有ln(x)>1/(e^x)-2/(ex) 已知函数Fx的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且当x>1时,fx>0,f(2)=1.1.求证fx是偶函数2.求证fx在(0,正无穷)单调递增3.解不等式f(2x²-1) 已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2,都有f(x1*x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,求证:f(x)是偶函数证明f(x)在(0,正无穷)上是增函数解不等式f(2x^2-1) 已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1、x2都有f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)求证:f(x)在(0,正无穷)上是增函数(2)解不等式:f(2x^2-1) 设f(x)是定义在(0,正无穷)上的增函数,对一切m,n∈(0,正无穷),都有:f(m/n)=f(m)-f(n),且f(4)=1,解关于x的不等式f(x+6)-f(1/x)<2 设f(x)是定义在(0,正无穷)上的增函数f(m/n)=f(m)-f(n),且f(4)=1,解关于x的不等式f(x)-f(1/x)设f(x)是定义在(0,正无穷)上的增函数,对一切m,n∈(0,正无穷),都有f(m/n)=f(m)-f(n),且f(4)=1,解关于x的不等 已知函数gx=fx/x是定义在(0,正无穷)上的减函数求证 对任意的x1,x2属于(0,正无穷),都有fx1+fx2大于f(x1+x2) 已知函数f(x)的定义域是(负无穷,0)并(0,正无穷),对定义域内的任意x1,x2,都有f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0.(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,正无穷) 已知函数f(x)=xlnx,若对一切x属于0到正无穷,都有f(x)≤x2-ax+2恒成立,求实数a的取值范围 已知函数f(x)的定义域是:x不等于0 的一切实数,对定义域内的任意x1,x2 都有f(x1乘x2)=f(x1)加f(x2) ,切当 x>1时,f(x)>0,f(2)=1 (1)求证f(x)是偶函数,(2)求证 f(x)在(0,正无穷)上是增函数(3)试比较 f(-0.4 设函数f(X)的定义域为R+,且有:1.f(1/2)=1,2.对任意正实数x,y都有f(X*y)=f(x)+f(Y),3.f(x)为减函数(1)求证:当x∈[1,正无穷)时,f(X)≤0(2)求证:当x,y属于R+,都有f(x/y)=f(X)-f(Y)(3)解不等式:f(-x)+f(3-x)≥-2 已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x 1,x2都有f(x1x2)=f(x1)+f(x2),且当x大于1时 f(x)大于0,f(2)=1,(1)求证f(x)是偶函数;(2)f(x)在(0,正无穷)上是增函数;(3)接不等 有一个函数题不太会……帮忙啊已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1*x2)=f(x1)+f(x2).且当x>1时,f(x)>0,f(2)=1.求证:f(x)在(0,正无穷)上是增函数(上一问 连续函数性质设f(x)在[a,正无穷)上连续,取正值,且lim(x趋近无穷)f(x)=0,证明必存在x0从属[a,正无穷),使得对一切x从属于[a,正无穷),均有f(x0)大于等于f(x) 一道简单而高分的函数单调性试题,已知g(x)=f(x)/x在(0,正无穷)上为减函数,求证:对任意的x1,x2属于(0,正无穷)都有f(x1)+f(x2)>f(x1+x2).最好有过程,小弟感激不尽! 函数f(x)的定义域为{x|x∈R,x不等于0},对一切x.y∈R,都有f(xy)=f(x)+f(y).在第一步已求出f(x)为偶函数(2)如果f(4)=1,且f(x)在(0,正无穷)上是增函数,则不等式f(3x+1)+f(2x-6)≤3的解集是? 已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2)且当x>1时,f(x)>0,f(2)=1,求证f(x)是偶函数(2)f(x)在(0,+无穷)上是增函数。