向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:15:18
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.
xݒJ@_etwpB`( -5"HCz jj}w9:EMi5Yi{׳Hi>Jgk:E񢺕>J'V6Td|NWDiP m0õNx[;KL. p_HܷqOn|'שH,Deu ԤR۾[c*јhuXJ3b43cªRJXCHS:RAtX|@[Qyy3ڕ+(7iP

向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.
向量空间证明题
怎么证明?
设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合
V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.

向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.
显然V是R^n的非空子集,只要证明V中元素满足线性性就可以了.
设a=k1a1+...+knan=k1b1+...+knbn属于V
b=t1a1+...+tnan=t1b1+...+tnbn属于V
k是数,
于是
k*a=k*k1a1+...+k*knan=k*k1b1+...+k*knbn
a+b=(k1+t1)a1+...+(kn+tn)an=(k1+t1)a1+...+(kn+tn)an
所以k*a和a+b都属于V
所以V是R^n的子空间

向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间. 空间向量怎么证明线面平行 用空间向量证明 高中空间向量的证明题, 一道线性代数证明题设σ1,σ2,...,σs为s个两两不同的线性变换,证明在线性空间V中存在向量α,使得σ1α,σ2α,...,σsα两两不同.这题构造一晚上了,怎么也做不出来…… 线性代数证明题,谢谢设V1,V2均为实数域上的向量空间,证明:V1∩V2也是实数域上的向量空间. 线性代数证明题,谢谢设V1,V2均为实数域上的向量空间,证明:V1∩V2也是实数域上的向量空间. 空间中三点共线怎么证明?1空间中三点共线怎么证明?不用向量的方法2空间中两条直线相交不相交怎么看? N维向量空间向量的秩,证明题设A:α1,α2,……,αr,β,γ,…是若干个n维向量构成的向量组,证明α1,α2,……,αr是A的一个最大线性无关组的充要条件是下面条件都成立:(1)α1,α2,……αr与原向量 空间向量已知四点坐标怎么证明四点共面 高中数学的空间向量基低怎么证明? 怎么证明一个向量组是空间的一组基 线性代数问题,我想知道怎么证明两个向量空间相等 怎么用空间向量证明线线垂直或平行 证明向量空间必定含有零向量 用空间向量证明平行时,法向量的坐标可以随便设吗? 高等代数 设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一高等代数设V是由n维实向量在标准度量下构成的欧氏空间,α是V中的一个单位向量,证明必存在一 怎么证明复数域C作为自身上的向量空间的维数是1?