已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:54:41
已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X)
x){}K}6uCZFmqf^޳5 MYk $Ä^t/M35y)H#BqCc166IE3\Άn6}΋ONӨ0N{H3'zv=dGZNuZ4P6PM.YDŽ竻_44%XqOw

已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X)
已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X)

已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X)
时,能使[f(x1)+f(x2)]的二分之一<f[(x1+x2)的二分之一]成立考的是函数凹凸性,答案是指数函数和二次函数那个,他俩图像都是凹的

已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X) 已知函数fn(x)=sinn次方x+(-1)n次方cosn次方x.若f1(x)=1,求f2(X)、f3(X)、f4(X) 已知函数f(x)=x/(1+|x|),设f1(x)=f(x),fn+1(x)=f[fn(x)],求f2(x),并求fn(x)通项公式 已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式苏教版高中数学选修2-2p78页最后一题 已知函数f(x)=x/1+|x|,设f1(x)=f(x),fn+1(x)=f[fn(x)]1)写出f2(x)和f3(x)的解析式,并猜想数列{fn(x)}的通项公式.2)判断并证明函数y=fn(x)的单调性. 已知f(x)=x/(x 1),f1(x)=f(x),fn(x)=fn-1[fn-1(x)]求f100(x)的值 已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,f2(x)=f1‘(x),f(x)=f2’(x).fn+1(x)=fn‘(x),n∈N+,则f2011(x)= 已知函数f(x),x∈R,且f1(x)=2x,记f(f(f(x…))=fn(x)【其中n为几就有几个f】,求f4(x)=?求fn(x)=? 已知函数f(x)=(1+x)/(1-3x),f1(x)=f(x),fn+1(x)=f(fn(x)),n大于等于2,n是正整数求f2010(x) 已知数列{an}和函数fn(x)=a1x+a2x^2+…+anx^n.当n为正偶数时,fn(-1)=n:已知数列{an}和函数fn(x)=-n已知数列{an}和函数fn(x)=a1x+a2x^2+…+anx^n.当n为正偶数时,fn(-1)=n;dangn为正奇数时,fn(-1)=-n. 已知函数f(x)=X/1+lxl,设f1(x)=f(x),fn+1(x)=f【fn(x)】,(n∈N*)(1)写出f2(x)和f3(x)的解析式,并猜想数列{fn(x)}的通项公式(2)判断并证明函数y=fn(x)(n∈N*)的单调性(3)对于no∈N*,若函数y=fno(x)的图像 已知函数fn(x)=(1+1/n)x(n属于N)的导函数为f`n(x) (1)比较fn`(0)与1/n的大小 已知序列函数fn(x)在[a,b]上一致收敛于极限函数f,且fn(x) 在[a,b]上有界.g(x)是在R上的连续函数,求证 g(fn(x))一致收敛于g(f(x)) 记函数fn(x)=a*x^n-1的导函数为f'n(x),已知f3'(2)=12.求a的值 1,函数fn(x)=n的平方乘以x的平方乘以(1-x)的n次方(n为正整数)则fn(x)在[0,1]上的最大值是?2,已知函数f(x)=2倍cosx的平方+2sinxcosx-1的图象与g(x)=-1的图象在y轴右侧的交点按横坐标从小到大 已知f(x)+x^2-2x+c,f1(x)=f(x),fn(x)=f(fn-1(x))(n>=2),若函数y=fn(x)-x不存在零点,则c的取值范围是A c=0.75 C>2.25 D c 已知F1(x)=2/(1+x),定义Fn+1(x)=F1[Fn(x)],an=[Fn(0)-1]/[Fn(0)+2],则数列an的通项公式是 已知函数f(x)=(x-根号3)/(根号3x+1),设f1(x)=f(x),fn+1(x)=f(fn(x)),若集合m={x|f2012(x)=2x+根号3}为什么f2(x)=f(f1(x))=(-x-根号3)/(根号3x-1)求助