用数学归纳法证明 1+2+2^2+……+2^3n-1 能被7整除以上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:27:06
用数学归纳法证明 1+2+2^2+……+2^3n-1 能被7整除以上
x){>eų]t6?

用数学归纳法证明 1+2+2^2+……+2^3n-1 能被7整除以上
用数学归纳法证明 1+2+2^2+……+2^3n-1 能被7整除
以上

用数学归纳法证明 1+2+2^2+……+2^3n-1 能被7整除以上
n=1,显然的
假设n=k成立,k>=1
1+2^2+……+2^(3k-1)能被7整除
则n=k+1
1+2^2+……+2^(3k-1)+2^(3k)+2^(3k+1)+2^(3k+2)
=1+2^2+……+2^(3k-1)+2^(3k)*(1+2+2^2)
=1+2^2+……+2^(3k-1)+2^(3k)*7
1+2^2+……+2^(3k-1)能被7整除
2^(3k)*7也能被7整除
所以1+2^2+……+2^(3k-1)+2^(3k)*7能被7整除
即n=k+1时也成立
综上
1+2+2^2+……+2^3n-1 能被7整除