求40道以上的5年纪奥术计算题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:23:12
求40道以上的5年纪奥术计算题
xXvzgJ嚀qHxoo6Y X YՖ@ ]YU FFUQ lwFn܌gkKMq{ռn*#~HyFpT{;,峧O\SE.Wsng?_Sv:4UNMH dM^XljFn,<^$[gbaMJp{_v_+o[q] `Vj?Xco{.rSS OZ1Cfq[/_q_БðY+I,8xQ^I+ƕyv#U٩.M5+Q0BWG6_>ʎe#l3b կ}-Nu^ SL`g!t?gjȢʙ]*<:0B)+0 @S8#ʋއ˿̄2!P[ gK_9ŕkLbN%h K0KjXU,#OO7y`tp7+ S3, ;x#8Giay53 t%Ů͒)$_\H-߮KfZ|_5 0~`.6`?| *dHFNN綷AR{>\hKϊWZ~PAO9GI] ybXt9}g-C_R(1hNj<;U>m84P`9VИK ouh$]*?ʕx[,{{!)ޟ5lk0@.eWm` (vJaa~CBtvqeA5i>  =@T2.ɱo7im/z 4B^9GDY4;#qBYC"CvF2eYc`[ #"E|L.|v̶b|KN,>oXWrͦ@4P[EEv;rt%6ՓH"9Yr"%S/S !dL:FeL#{,xdKn{k^ W*-a%h+bҽyLQkʍE6h;}:4|ɓS(xIJ㳘!4` Pv(ong̰yϲG%i~{5{Ѽ`)6^w.0_pQV=k GE[Y"iEJ cՋ,7*s"A5~x?9eDœ8TK,M k:PP,cjjNӳν^&i,^FTN 3(+$~<$mQƫR+X!X޸>xL8+&Ğ{ׯtJ>

求40道以上的5年纪奥术计算题
求40道以上的5年纪奥术计算题

求40道以上的5年纪奥术计算题
网上搜就是!
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.

2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟