已知点O是△ABC所在平面内的一点,详见补充说明已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)其中OC,AB,OB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:36:36
已知点O是△ABC所在平面内的一点,详见补充说明已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)其中OC,AB,OB
xON@Ư-`n@0D/H)$*5Ԙ)]L_zߴHòqͼo~ͼ7oF`ߌ\x=;{*a> i ש}P nG`v3NB}ǡ\Tp,,

已知点O是△ABC所在平面内的一点,详见补充说明已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)其中OC,AB,OB
已知点O是△ABC所在平面内的一点,详见补充说明
已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)
其中OC,AB,OB,AC ,OA ,BC是向量

已知点O是△ABC所在平面内的一点,详见补充说明已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)其中OC,AB,OB
|OC|^2+|AB|^2=|OB|^2+|AC|^2
OC^2-OB^2=AC^2-AB^2
(OC-OB)(OC+OB)=(AC-AB)(AC+AB)
BC(OC+OB)=BC(AC+AB)
BC(AC-OC+AB-OB)=0
BC(AO+AO)=0
BC*AO=0
其他几个式子同样处理,就知道O是垂心

已知点O是△ABC所在平面内的一点,详见补充说明已知点O是△ABC所在平面内的一点,且向量|OC|^2+|AB|^2=|OB|^2+|AC|^2=|OA|^2+|BC|^2,则O是△ABC的(内心;外心;垂心;重心)其中OC,AB,OB 已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的 已知O 是△ABC所在平面内一点,问 应选哪个?为什么?/> P是△ABC所在平面外一点,O是P点在平面ABC上的射影若P到△ABC三边的距离相等,且射影在△ABC内,则O是△ABC 已知点p是三角形ABC所在平面a外的一点,点O是点p在平面a上的射影.(1)若点p到三角形的三边距离相等,点O在三角形ABC内,则点O是三角形ABC的什么心?内心)(2)若点p到三角形ABC的三个顶点距离相 P是△ABC所在平面α外一点,O是点P在平面α内的射影,若PA=PB=PC,且AB=AC,那么O点在( )线上?P是△ABC所在平面α外一点,O是点P在平面α内的射影,若PA=PB=PC,且AB=AC,那么O点在( )线上?我填在∠A的角平 1、若P为△ABC所在平面外一点,且PA=PB=PC,求证点P在△ABC所在平面内的射影是△ABC的外心.2、平行四边形ABCD所在平面α外有一点,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、 P是△ABC所在平面α外一点,O是P点在α内的射影,若PA,PB,PC两两垂直,证O是△ABC的垂心 P是△ABC所在平面α外一点,O是P点在α内的射影,若PA⊥BC,PB⊥AC,则O是△ABC的____? P是△ABC所在平面α外一点,O是P点在α内的射影,若PA⊥BC,PB⊥AC,则O是△ABC的____?(求详实证明) 高一数学线面垂直困难题,已知△ABC所在平面外一点P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影是△ABC的? 已知点P为△ABC所在平面内一点,且满足向量OP=OA/|OA|+OB/|OB|,则点P所在的位置 O为△ABC所在平面内一点,且[OA]^2+[BC]^2=[OB]^2+[CA]^2=[OC]^2+[AB]^2,试证:点O是△ABC的垂心 已知O为三角形ABC所在平面内一点,若OA+OB+OC=O,则点O事三角形ABC的什么心以上OA,OB,OC,O均为向量 求急 一道数学题(平面向量)点O是三角形ABC所在平面内的一点,满足向量OA*OB=OB*OC=OC*OA,求证:点O是三角形ABC的外心. 已知O是三角形所在平面内的一点,且满足向量摸OB-OC=OB+OC-2OA,则三角形ABC的形状是 P是△ABC所在平面α外一点,O是P点在α内的射影,若PA⊥BC,PB⊥AC,则O是△AB 已知P是Rt△ABC所在平面外一点,O是斜边AC的中点,并且PA=PB=PC.求证:PO⊥平面ABC