在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:19:28
在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC.
xJ@W`!f,HR0gIĥ"xsA\n"(.(b/؋"Mۜ|GE<Ǐ?c/?>^s%:˽AܿM$׳]OݷIcܿ[ެN8.w[*l4%&цX=I#g 8m:+[l7WG2.i.d.ōF:$z&3K2σ8 h,ǣC8]B%՚mJD #tH%8`Pt0ҡB#&!P*xĐ"AFHI%E>-c9b*hhPt"ҊT{.E0v?.Eh,/T

在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC.
在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC.

在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC.
你的题已知部分有问题

一道高中几何证明题,在正四棱锥V-ABCD中,E为VC中点,正四棱锥底面边长为2,高为1.求异面直线BE与VA所成角的余弦. 在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC. 在四棱锥E-ABCD中,三角形ABC为正三角形,CD=CD,EC⊥BD,(1)求证:BE=DE.(2)若角BCD=120°,M为AE的中点,求证:BM//平面BEC. 如图 在矩形ABCD中E F 分别为边AB AD中点 现将三角形ADE沿DE折起 得四棱锥A-BCDE求证 EF∥平面ABC 2007 山东淄博二模在四棱锥S-ABCD中底面ABCD为正方形,侧棱SA⊥底面ABCD,且SA=AB E.F分别为AB,SC中点,求EF⊥CD在四棱锥S-ABC中底面ABCD为正方形,侧棱SA⊥底面ABCD,且SA=AB E.F分别为AB,SC中点,求EF⊥CD 在底面是菱形的四棱锥P-ABCD中,∠BAD=60°,PA=PD,E为PC的中点 求证三角形PBC是直角三角形 在底面是棱形的四棱锥P-ABCD中,角BAD=60度,PA=PD,E为PC中点.求证三角形PBC是直角三角形 如图,在四棱锥o-abcd中,底面abcd是边长为一的菱形,abc=45 已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD. 四棱锥p-ABCD中底面ABCD为菱形,∠ABC=60,PA⊥面ABCD,E为BC中点,证AE⊥PD 请问数学题:在底面边长为2的正四棱锥P-ABCD中,若侧棱长PA与底面ABCD所成了角大小为 派/4,...在底面边长为2的正四棱锥P-ABCD中,若侧棱长PA与底面ABCD所成了角大小为 派/4,则此正四棱锥的斜高 在正四棱锥P-ABCD中,PA=AB,则二面角A-PB-C的平面角的余弦为? 在四棱锥P-ABCD中,底面ABCD为矩形、面PAD⊥面ABCD,PA=PD,E为AD的中点,求证:PE垂直面ABCD 如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,E,F分别为PD,AB的中点,且PA=AB=1,BC=2.求四棱锥E-ABCD的体积 在底面为平行四边形的四棱锥P-ABCD中,E是PD中点,求证:PB//面AEC 四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,角APD=90度,面APD垂直面ABCD,AB=1,AD=2,E...四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,角APD=90度,面APD垂直面ABCD,AB=1,AD=2,E,F分别为PC和BD 已知正四棱锥S-ABCD中,SA=2倍根号3棱锥的体积最大时,高为 如图,在四棱锥S-ABCD中,SB⊥底面ABCD,底面ABCD为矩形,点E为SB的中点求证AB⊥SCSD//平面AEC