已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:31:50
已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.
x){}K* **mc׳[MlcӋVF:fUjWFz `v.P|Թ&HX ~kʳѥ.IMX|Fӆ=Ov>_tO}ԀIl!j#:0GBd`2:@GCB QSaYWד]/.{cw

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.
已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+.
x1 x2..xn均为整数应是x1 x2..xn均为正数吧,
由均值不等式得:
(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...
(x1/√xn)+√xn≥2√x1,
把上面n个不等式相加得:
x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn+(√x1+√x2+...+√xn)≥2(√x1+√x1+...+√xn),
所以x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x1+...+√xn.

已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+. 已知x1,x2,………xn均为正数,求证:x2/√x1+x3/√x2+……x1/√xn≥√x1+√x2 + ……√xn1、2、3……n都是下标 ::::::如题已知X1到Xn的求和为1.求证(x1x2+x2x3+…+xnx1)*{[(x1/(x2^2+x2)]+…+[x...::::::如题已知X1到Xn的求和为1.求证(x1x2+x2x3+…+xnx1)*{[(x1/(x2^2+x2)]+…+[xn/(x1^2+x1)]}大于等于n/(1+n) 已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+x2+…+xn 设x1,x2,.,xn为正整数.求证(x1+x2+.xn)(1/x1+1/x2+.1/xn)>=n平方 已知x1,x2,…,xn的取值都是+1或-1,并且x1/x2+x2/x3+x3/x4+…+xn-1/xn+xn/x1=0,求证n必为4的倍数 记min{x1,x2,x3…,xn}为x1,x2,…xn中最小的一个求证(1)设xεR,min{x 已知X1*X2*X3*…*Xn=1,且X1*X2*X3*…*Xn是正数 ,求证(1+X1)(1+X2)…(1+Xn)>=2^n 如何解柯西不等式已知X1,X2,...Xn是正数求证:(X1+X2+..=Xn)(1/X1+1/X2+...+Xn)小于等于N^2 设函数f(x)=loga*x(a为常数且a>o,a≠1),已知数列f(x1),f(x2),...,f(xn),...是公差为2的等差数列,且x1=a*2(1)求数列{Xn}的通项公式;(2)当a=1/2时,求证:x1+x2+...+xn 求教,均值不等式设x1,x2,……,xn为正实数,S=x1+x2+……+xn,求证:(1+x1)(1+x2)……(1+xn) 已知数列Xn limXn=a 求证:lim(X1+X2+X3+.+Xn)/n=a 已知X1,X2,...,Xn(自然数n≥3),为n个两两互不相等的实数,且X1+(1/X2)=X2+(1/X3)=...Xn-1+(1/Xn)=Xn+(1/X1),求证X1^X2^...Xn……=1 设x1,x2,...,xn为实数,证明:|x1+x2+...+xn| 数列{Xn}各项均为正,满足x1^2+x2^2+...+Xn^2=2*n^2+2*n .(1) 求Xn.(2) 已知1/(x1+x2)+1/(x2+x3)+...+1/(Xn+Xn+1)=3,求n.(3) 证明X1*X2+X2*X3+...+Xn*Xn+1 已知n个整数 x1,x2,…..xn,以及一个整数k (k 设x1、x2、……、xn∈R+ 求证:(x1²/x2)+(x2²/x3)+……+(x²(n-1)/xn)+(xn²/x1)≥x1+x2+……+xn 设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn.