初一全等三角形试题已知,AB=AC,AD=AE,角1=角2,求证BD=CE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:51:32
初一全等三角形试题已知,AB=AC,AD=AE,角1=角2,求证BD=CE
初一全等三角形试题
已知,AB=AC,AD=AE,角1=角2,求证BD=CE
初一全等三角形试题已知,AB=AC,AD=AE,角1=角2,求证BD=CE
这道题很难的,是初一奥术题,考试不会考的
证明:
作∠BEF=∠BCD;并使EF=BC
∵BE=DC
∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF
设∠ABE=∠EBC=α,∠ACD=∠DCB=β
∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β);
∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CEF
∵2α+2β
老大你真强。连图都没有怎么做呀!!!!!
请画好图再问!
证明:
作∠BEF=∠BCD;并使EF=BC
∵BE=DC
∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF
设∠ABE=∠EBC=α,∠ACD=∠DCB=β
∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β);
∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CE...
全部展开
证明:
作∠BEF=∠BCD;并使EF=BC
∵BE=DC
∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF
设∠ABE=∠EBC=α,∠ACD=∠DCB=β
∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β);
∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CEF
∵2α+2β<180°,∴α+β<90°
∴∠FBC=∠CEF>90°
∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上.
设垂足分别为G、H;
∠HEF=∠CBG;
∵BC=EF,
∴Rt△CGB≌Rt△FHE
∴CG=FH,BC=HE
连接CF
∵CF=FC,FH=CG
∴Rt△CGF≌△FHC
∴FG=CH,∴BF=CE,∴CE=BD
收起