解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:39:59
解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)
xSMoQ+wISf]9)e-X`Zp0[#l|1 +wތ@L޽sϽ7dT5YV{Eb522 -t)k˦5.fvsg.mu!-Ti.ϝgXt;Nwyv-4*w5KAָ $^͉*H9 Z;F^P.Omĉ5myfUKJSbf_愨?pQGў5j:_P|Ach_hG*iɉ-IySi@b  (#w4xT:׳'O A{Q?TrI|j"D <~ Uv|Z:5Kz_qgx6xu# ~B iVy:e$7#<ѲZRj5^9- w VK

解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)
解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)

解不等式:根号(4-x2)+[x]/x>=0 (注:[ ]是绝对值)
x2是指x^2么?我先当是这样做了.
本题的关键在于对绝对值内正负的讨论
由于分母不能为0,显然x不等于0
当x>0时.原不等式转化为:x^2

因为x作分母,所以x不等于0.当x>0,4-x^2+1>0,得x>根号5;当x<0,4-x^2-1>0,得x<根号3.综上所述,x>根号5或x<根号3.

解不等式:√(4-x2)+|x|/x>=0 (注:[ ]是绝对值)
:√(4-x^2)+|x|/x>=
Domain 4-x ^ 2> = 0 -2 <= x <= 2,
the denominator of x is not equal to 0 if -2 <= x <0,
| x | =- x
so √ (4-x ^ 2) -1 > = 0

全部展开

解不等式:√(4-x2)+|x|/x>=0 (注:[ ]是绝对值)
:√(4-x^2)+|x|/x>=
Domain 4-x ^ 2> = 0 -2 <= x <= 2,
the denominator of x is not equal to 0 if -2 <= x <0,
| x | =- x
so √ (4-x ^ 2) -1 > = 0
√ (4-x ^ 2)> = 1
4-x ^ 2> = 1
x ^ 2 <= 3
- √ 3 <= x <= √ 3
because -2 <= x <0
So - √ 3 <= x <0 if 0 = 0 √ (4-x ^ 2)> = 0 Therefore,
√ (4-x ^ 2) +1> = 0
set up so

收起