f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:44:09
xn@_Ton!!/&a@BEq*A
B%
>+0n\)Pf\;GWL|v1u".ه[tۀf7^02GZ0vdQ=^gMZv?
ykmuI{:N!c=yFwfY
bbeY5[bRvDYƾ,ZZf_eXlNI"11)3 rX!I<9N&>)q-QJX5]WrX%Y琢Q6\dkc_hֱ
f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
必要条件是f在该处的梯度为0向量
充分条件是f在该处的梯度为0向量,并且该点处黑塞矩阵正定或者负定
梯度是f关于x,y的偏导数构成的向量,即(δf/δx,δf/δy)
黑塞矩阵见图片
正定是各阶顺序主子式都大于0
负定是奇数阶小于0,偶数阶大于0
f(x,y)在(X0,y0)取得极值的充分条件,必要条件分别是什么
f(x0,y0)对x的偏导等于0,f(x0,y0)对y的偏导等于0,是f(x,y)在(x0.y0)取得极值的什么条件
设二元函数f(x,y)在点(x0,y0)处满足fx(x0,y0)=0,且fy(x0,y0)=0,则有?f(x,y)在点(x0,y0)处一定取得最大值吗?还是最小值?f(x,y)在点(x0,y0)处一定取得极值?还是不一定取得极值?
可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是A、fx(x0,y0)=fy(x0,y0)=0;B、曲面z=f(x,y)在(x0,y0,z0)处具有水平的切平面;C、fxy(x0,y0)=0;D、dz|(x0,y0)=0;但是我找不出来哪个是错的?
设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0,已知点(x0,y0)是f(x,y)在条件φ(x,y)=0下的一个极值点,下列结论正确的是( )ABC若f'x(x0,y0)=0,则f'y(x0,y0)≠0D若f'x(x0,y0)≠0,则f'y(x0,y0)≠0(f'x和f'y 中'
若二元函数f(x,y)在R^2上有极值点(x0,y0),则该函数在(x0,y0)连续吗
若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部唯一的极值点,且f(x,y)在该点取极大值,则f(x,y)在点(x0,y0)取得它在D上的最大值.请问为什么不对啊?
f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
对于二元函数f'x(x0,y0)=0,f'y(x0,y0)=0则在点M(x0,y0)处f(x,y)A必连续B必须取极值C可能取极值
多元微分问题设z=f(x,y)在点(x0,y0)处取得最大值,则g(x)=f(x,y0)在x0处与h(y)=f(x0,y)在y0处()A 恰有一个取得极大值 B 至多有一个极大值C 一定都取得极大值 D 都不能取得极大值
有约束条件的极值讨论问题设f(x,y)与Q(x,y)均为可微函数,且Q偏y的导函数不等于0,已知(x0,y0)是f(x,y)在约束条件Q(x,y)=0下的一个极值点,为什么f(x0,y0)对X的偏导数不等于0,
设f(x,y)与φ(x,y)均为可微函数,且φ对y的偏导数不为零,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是:A .若fx(x0,y0)=0,则fy(x0,y0)=0B .若fx(x0,y0)=0,则fy(x0,y0)≠0C .若fx(x0,y0)≠0,
f,(x0)=0是函数f(x)在x=x0处取得极值的(?)条件
设f(x,y)与φ(x,y)均为可微,且φ´y(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下一个极值点正确是() D.若f´x(x0,y0)≠0,则f´y(x0,y0)≠0
设函数u=F(x,y,z)在条件φ(x,y,z )=0和ψ(x,y,z )=0下在点(x0,y0,z0 )取得极值证明三曲面F(x,y,z)=m,φ(x,y,z )=0和ψ(x,y,z )=0在点(x0,y0,z0 )的三条法线共面,其中Fφψ均具有一阶连续偏导数,且偏导数均不为零
有关二元函数f ( x,y)的下面四条性质:(请说出理由)有关二元函数f ( x,y)的下面四条性质:(1) f ( x,y)在点 ( x0 ,y0 )可微; (2) f 'x(x0,y0),f'y(x0,y0) 存在;(3) f ( x,y)在点( x0 ,y0)连续; (4) f 'x(x,y)
二元函数f(x,y)在点(x0,y0)处两个偏导数 x(x0,y0),y(x0,y0)存在是f(x,y)在该点连续的?什么条件