f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:26:17
x)K{I@@ٌO>6MBϛvVV<]}ӟk|ڰ
{:m)ү_`gCo}܅OvoSxd_HmENh'{۞{:{ߋ>uOvڴF 10 !
f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
必要条件 反例:f(x)=x^3 ,f'(0)=0 ,但从图象可知它不是极值点
函数y=f(x)在点x0处取得极大值,则必有( ).单选题a.f '(x0)=0 ,f ''(x0) >0b.f ''(x0)
设函数y=f(x)在点x0处有导数,且f'(x0)>0,则曲线y=f(x)在点(x0,f(x0))处切线的倾斜角的范围是
f′(x0)=0,是函数y=f(x)在点x=x0处取得极值的( )
设函数y=f(x)是微分方程y-2y'+4y=0的一个解.若f(x0)>0,f'(x0)=0,则函数f(x)在点x0某个领域内单调递增?
设函数y=f(x)在点x0处可导,且f'(x0)=a,则lim△x→0 f(x0–2△x)–f设函数y=f(x)在点x0处可导,且f'(x0)=a,则lim△x→0 f(x0–2△x)–f(x0)/△x 为什么?
函数y=f(x)在区间(0,+∞)内可导.导函数f′(x)是减函数,且f′(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.(1)用x0,f(x0),f′(x0)表示m;(2)证明
函数y=f(x)在区间(0,+∞)内可导,导函数 是减函数,且 设 是曲线y=f(x)在点(x0,f(x0))得的切线方程,并设函数g(x)=kx+m (Ⅰ)用x0、f(x0)、f'(x0)表示m;(Ⅱ)证明:当 ;(Ⅲ)若关于x的不等式
1.已知函数y=f(x),那么下列说法错误的是:(把错得改正下) A、△y=f(x0+△x)-f(x0)叫函数增量 B、△y/△x=[f(x0+△x)-f(x0)]/△x叫函数x0到x0+△x之间的平均变化率 C、f(x)在点x0处的导数记为y′ D、f(
函数 f(x),在x= x0处,f'(X0)=0是 f(x)在 x= x0有极值点的什么条件?
设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0,已知点(x0,y0)是f(x,y)在条件φ(x,y)=0下的一个极值点,下列结论正确的是( )ABC若f'x(x0,y0)=0,则f'y(x0,y0)≠0D若f'x(x0,y0)≠0,则f'y(x0,y0)≠0(f'x和f'y 中'
函数y=f(x)可导,f'(x0)=0,则x0是极值点,为什么不对啊?
设函数f(x)在x0处有三阶导数,且f(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
一道高三文科数学题###函数y=f(x)在区间(0,正无穷)内可导,导函数f'(x)是减函数,且f'(x)>0.设x0属于(0,正无穷),y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,并设函数g(x)=kx+m(1)用x0,f(x0),f'(x0)表示m
可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
f(x0)=0是点(x0,f(x0))为曲线y=f(x)的拐点的,什么条件,
某点导数大于0,其原函数在这点邻域内单调递增设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0).导数的定义是
设函数y=f(X)在点x0处可导,且f'(X0)=a,则lim(△x->0)(f(x0-2△x)-f(X0))/△x)=?
已知函数f(x)在点 x0处可导,且f ′(x0)=3,则lim f(x0+2h)-f(x0)/h等于