已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:39:21
已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45°
xVQoV+(R_s0d{fJ&@ak-TkF.ӦfRvFKvV&0;k8MR5Us?{='׼lu ݧb9Q4ڹy_t 1ruzNqUkgO`=j]7Z!=V7kvӵzFḥ/j@.%?JhQ~eK҆QT2zI1I-[M1*mhthi]CZMD&SMVҙxa+,cTnddʖT*i>mʹ0)%ra*t 'ppCOf^fSL\ ]y95xXG1F;Dؿ>.Dp$ E.,:\SVD}?heHJ2<蚽'foPJl7/r[J"h5jul P#jT!<"3/q:| /U4 ?_ɰPV6y) DUo5j%ļ]j@<8R*#89Okuo}kkfo_j P.fv.~^(ͽey!&zgkO`c7yN 2sqI:"dz8巐;.X<~GᐈxKҳA/BRN)vBTCMT_$9jj n 'nTZzcA?eS8~تs)}ppkϺ[wq)(Ϗ?m[?'/>k`YiH; M< )A;+DVq, ʰu{֖|/NOBOPow!,cr@yڜ3L:5uW.3N;v_м^>@睚}l-c819[ҝSzi4әf:Ӽs3͙:~

已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45°
已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45°

已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45°
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P.
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB
AE/AN=AC/AM,NE/AN=MC/AM
AE=AN*AC/AM=Y*X/√(X^2+Y^2)
NE=AN*MC/AM=Y^2/√(X^2+Y^2)
过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC
PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y
PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)
BF*(X-Y)/(X+Y)=FM*X/Y
BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]
BF=BM+FM=X+FM
FM*X*(X+Y)/[Y*(X-Y)]=X+FM
FM=XY*(X-Y)/(X^2+Y^2)
PM/FM=AM/CM
PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]
=X*(X-Y)/√(X^2+Y^2)
PE=AM-AE-PM
=√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)
=Y^2/√(X^2+Y^2)
=NE
因为NE⊥AM,即NE⊥PE
可知在直角△NEP中,NE=PE
故 ∠EPN=45°
但∠BPM=∠EPN
所以∠BPM=45°
证法二:
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P.
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
tan∠AMC=AC/MC=X/Y
tan∠NBC=CN/BC=(X-Y)/(X+Y)
∠AMC=∠BPM+∠NBC
∠BPM=∠AMC-∠NBC
tan∠BPM=tan(∠AMC-∠NBC)
=(tan∠AMC-tan∠NBC)/(1+tan∠AMC*tan∠NBC)
=[X/Y-(X-Y)/(X+Y)]/[1+(X/Y)*(X-Y)/(X+Y)]
=[X*(X+Y)-Y*(X-Y)]/[Y*(X+Y)+X*(X-Y)]
=(X ^2+Y ^2)/(X ^2+Y ^2)
=1
因为∠BPM

http://zhidao.baidu.com/question/70985608.html?si=5
这都做过了。

额,确实伤脑筋啊。
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则...

全部展开

额,确实伤脑筋啊。
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB
AE/AN=AC/AM,NE/AN=MC/AM
AE=AN*AC/AM=Y*X/√(X^2+Y^2)
NE=AN*MC/AM=Y^2/√(X^2+Y^2)
过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC
PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y
PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)
BF*(X-Y)/(X+Y)=FM*X/Y
BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]
BF=BM+FM=X+FM
FM*X*(X+Y)/[Y*(X-Y)]=X+FM
FM=XY*(X-Y)/(X^2+Y^2)
PM/FM=AM/CM
PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]
=X*(X-Y)/√(X^2+Y^2)
PE=AM-AE-PM
=√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)
=Y^2/√(X^2+Y^2)
=NE
因为NE⊥AM,即NE⊥PE
可知在直角△NEP中,NE=PE
故 ∠EPN=45°
但∠BPM=∠EPN
所以∠BPM=45°
证法二:
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
tan∠AMC=AC/MC=X/Y
tan∠NBC=CN/BC=(X-Y)/(X+Y)
∠AMC=∠BPM+∠NBC
∠BPM=∠AMC-∠NBC
tan∠BPM=tan(∠AMC-∠NBC)
=(tan∠AMC-tan∠NBC)/(1+tan∠AMC*tan∠NBC)
=[X/Y-(X-Y)/(X+Y)]/[1+(X/Y)*(X-Y)/(X+Y)]
=[X*(X+Y)-Y*(X-Y)]/[Y*(X+Y)+X*(X-Y)]
=(X ^2+Y ^2)/(X ^2+Y ^2)
=1
因为∠BPM<180°
所以∠BPM=45°

收起

额,确实伤脑筋啊。
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,...

全部展开

额,确实伤脑筋啊。
证法一(初中知识证法):
证:已知在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM与BN相交于点P。
设AC=BM=X,MC=AN=Y,则
BC=BM+MC=X+Y,CN=AC-AN=X-Y
AM=√(AC^2+MC^2)=√(X^2+Y^2)
过N点作NE⊥AM,交AM于E点,则△AEN∽△ACB
AE/AN=AC/AM,NE/AN=MC/AM
AE=AN*AC/AM=Y*X/√(X^2+Y^2)
NE=AN*MC/AM=Y^2/√(X^2+Y^2)
过P点作PF⊥BC,交BC于F点,则△PFM∽△ACM,△BPF∽△BNC
PF/FM=AC/MC,PF=FM*AC/MC=FM*X/Y
PF/BF=CN/BC,PF=BF*CN/BC=BF*(X-Y)/(X+Y)
BF*(X-Y)/(X+Y)=FM*X/Y
BF=(FM*X/Y)*[(X+Y)/(X-Y)]=FM*X*(X+Y)/[Y*(X-Y)]
BF=BM+FM=X+FM
FM*X*(X+Y)/[Y*(X-Y)]=X+FM
FM=XY*(X-Y)/(X^2+Y^2)
PM/FM=AM/CM
PM=FM*AM/MC=[XY*(X-Y)/(X^2+Y^2)]*[√(X^2+Y^2)/Y]
=X*(X-Y)/√(X^2+Y^2)
PE=AM-AE-PM
=√(X^2+Y^2)-Y*X/√(X^2+Y^2)-X*(X-Y)/√(X^2+Y^2)
=Y^2/√(X^2+Y^2)
=NE
因为NE⊥AM,即NE⊥PE
可知在直角△NEP中,NE=PE
故 ∠EPN=45°
但∠BPM=∠EPN
所以∠BPM=45°

收起

已知Rt△ABC中BM=AC,AN=CM求证:∠BPM=45° 如图已知:△ABC中,M.N分别在AB.AC上BN.CM交于H BN=CM .BM=CN 求证:AM=AN 如图所示,已知△ABC中,BE⊥AC于E,CF上分别截取BM=AC,CN=AB,连接AM、AN,试说明AM与AN的关系如图所示,已知△ABC中,BE⊥AC于E,CF上分别截取BM=AC,CN=AB,i连接AM、AN,试说明AM与AN的关系 已知:在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD与CE相交于M,求证:BM=CM 已知:如图,在△ABC中AB=AC,点M、N上,且AM=AN,求证:BM=CN(要求:不用三角形全等的方法 已知如图,△ABC中,∠B=∠CAM,MN∥AC,BM=10,CM=8,求MN的长. 如图 在RT△ABC中AB=AC,角BAC=90°O为BC中点.如果点M,N分别在线段AB,AC上移动且保持AN=BM △OMN什么形 如图 在RT△ABC中AB=AC,角BAC=90°O为BC中点.如果点M,N分别在线段AB,AC上移动且保持AN=BM △OMN什么形 如图,在rt三角形abc中,ab=ac,∠bac=90°,d为bc中点M、N分别在AB、AC上移动,保持AN=BM,判断△DMN的形状并说明理由 在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:AE×CM=AC×CD 如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:AE×CM=AC×CD是的 已知Rt三角形ABC中,cosB=5分之3,BC=15cm,则AC 如图已知RT三角形ABC中,AB=AC,在RT三角形ADE中,AD=AE,连结EC,取EC中点M,连结DM和BM,探究线段BM和DM的数数量和位置关系 如图已知RT三角形ABC中,AB=AC,在RT三角形ADE中,AD=AE,连结EC,取EC中点M,连结DM和BM,探究线段BM和DM的数量关系和位置关系 如图已知RT三角形ABC中,AB=AC,在RT三角形ADE中,AD=AE,连结EC,取EC中点M,连结DM和BM,探究线段BM和DM的数量与位置关系 等边三角形ABC中,点M,N分别在AB,AC,上,且AN=BM,BN与CM相交于点O,若S三角形ABC=7,S三角形OBC=2,则BM比BA=几? 已知RT△ABC中,AB=BC,在RT△ADE中,AD=DE连接EC,取EC中点M,连接DM和BM.若点D在边AC上.是否成立? 已知Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE ,连结EC,取EC中点M,连结DM和BM.若点D在边AC上,点E在边AB