∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 11:29:26
∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积
xőJA_E cvvc6Vo9Z*BA(D,* "]]Wh"o)p8sZm΋ḟsϛanf.{;g˨SQ^uN9 #_ON_/ o'NNBu; uA{i.p?p׌xfR1vL6(Ie$6)4”8vj%"fBMR4*@P4)%  ( )&TRb2M(rl(W,

∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积
∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积

∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积

题目不太完整,首先曲面的方向呢?还有那是z=√(x^2-y^2)还是z=√(x^2+y^2)?

∫∫x^2dydz+y^2dzdx+z^2dxdy,其中曲面为x^2+y^2+z^2=1的上半部分外侧 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 ∫∫∑(xz^2+1)dydz+(yx^2+2)dzdx+(zy^2+3)dxdy,其中,∑是锥面z=√x^2+y^2(0 计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x2+y^2(0计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x^2+y^2(0 计算I=∫∫x(1+x^2z)dydz+y(1-x^2z)dzdx+z(1-x^2z)dxdy其中∑为曲面z=√x^2+y^2(0 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 ∫∫x^2dydz+y^2dzdx+zdxdy,其中是z=根号(1-x^2-y^2)+1,z=根号(x^2-y^2)所围立体的表面积 计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2+y^2) (0 曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面上方的上侧 ∫∫(x^3+z^2)dydz+(y^3+x^2)dzdx+(z^3+y^2)dxdy 积分区域为z=√1-x^2-y^2 的上侧给积分区域加个下边,用奥高公式 ∫∫(x-y)dydz+(y-z)dzdx+(z-x)dxdy,∑为锥面z=√(x^2+y^2)的下侧,z在0到2之间如题,求组 ∫∫x^2dydZ十y^2dZdx+Z^2dxdy其中s为球面(x-a)^2+(y-b)^2+(Z-c)^2=R^2的外侧 ∫∫(x^3+az^2)dydz+(y^3+ax^2)dzdx+(z^3+ay^2)dxdy,其中为上半球面z=根号下a^2-x^2-y^2的上册 计算:I=∫∫(S+)x^3dydz+y^3dzdx+z^3dxdy,其中S+为椭球面x^2/a^2+y^2/b^2+z^2/c^2的外侧 计算曲面积分∫∫ 2x z^2 dydz + y(z^2+1) dzdx +9z3 dxdy其中曲面为z=x^2+y^2+1 (1 ∫∫(x^2-yz)dydz+(y^2-zx)dzdx+2zdxdy其中积分区域为z=1-√(x^2+y^2)其中(z>=0)的上侧 ∫∫x^2dydz+y^2dzdx+z^2dxdy∑是抛物面z=x^2+y^2被平面z=1所截下的有限部分的下侧 计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧