定义在R上的奇函数f(x)满足f(x-2)=f(x)且在【0,1)上单调递减,若方程f(x)=-1)且在【0,1)上有实数根,则方程f(x)=1在区间【-1,7】上所有实根之和为多少?最好配有图像,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 08:49:03
定义在R上的奇函数f(x)满足f(x-2)=f(x)且在【0,1)上单调递减,若方程f(x)=-1)且在【0,1)上有实数根,则方程f(x)=1在区间【-1,7】上所有实根之和为多少?最好配有图像,
xݑN@_[6D/7CK(|! GR1,J_ζ= bfgn!ozԖ%o&D"]WB>]@BM҆ϯY2m?<uau>a_4ElBkoDt|O#;ܳ_f-AFPiT:OYַsSI%{B{p)(- AEqa91$2$M< Dp

定义在R上的奇函数f(x)满足f(x-2)=f(x)且在【0,1)上单调递减,若方程f(x)=-1)且在【0,1)上有实数根,则方程f(x)=1在区间【-1,7】上所有实根之和为多少?最好配有图像,
定义在R上的奇函数f(x)满足f(x-2)=f(x)且在【0,1)上单调递减,若方程f(x)=-1)且在【0,1)上有实数根,则方程f(x)=1在区间【-1,7】上所有实根之和为多少?最好配有图像,

定义在R上的奇函数f(x)满足f(x-2)=f(x)且在【0,1)上单调递减,若方程f(x)=-1)且在【0,1)上有实数根,则方程f(x)=1在区间【-1,7】上所有实根之和为多少?最好配有图像,
由题可知f(x)是周期为4的函数,设x1是f(x)=1在【-1,0】上的根,由f(2-x)=f(-x),得到f(2-x1)=f(x1),f(6-x1)=f(4+x1),那么在区间【-1,7】上所有实根分别为x1,2-x1,4+x1,6-x1,和为12.