已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:31:54
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在A
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);
(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;
(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在A
(1)PO与BC的位置关系是PO∥BC;
(2)(1)中的结论PO∥BC成立,理由为:
由折叠可知:△APO≌△CPO,
∴∠APO=∠CPO,
又∵OA=OP,
∴∠A=∠APO,
∴∠A=∠CPO,
又∵∠A与∠PCB都为弧PB所对的圆周角,
∴∠A=∠PCB,
∴∠CPO=∠PCB,
∴PO∥BC;
(3)∵CD为圆O的切线,
∴OC⊥CD,又AD⊥CD,
∴OC∥AD,
∴∠APO=∠COP,
由折叠可得:∠AOP=∠COP,
∴∠APO=∠AOP,
又OA=OP,
∴∠A=∠APO,
∴∠A=∠APO=∠AOP,
∴△APO为等边三角形,
∴∠AOP=60°,
又∵OP∥BC,
∴∠OBC=∠AOP=60°,
又OC=OB,
∴△BC为等边三角形,
∴∠COB=60°,
∴∠POC=180°﹣(∠AOP+∠COB)=60°,
又OP=OC,
∴△POC也为等边三角形,
∴∠PCO=60°,PC=OP=OC,
又∵∠OCD=90°,
∴∠PCD=30°,
在Rt△PCD中,PD=PC/2,
又∵PC=OP=AB/2,
∴PD=AB/4,即AB=4PD.