以定点A(2,3)和动点B为焦点的椭圆经过点P(-2,0),Q(2,0),则动点B的轨迹方程是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:43:51
xJ@_E$HLBQ0H itTZjBK7.4y3
tK]{ǜsG4z!KOCxFbsAGvJhϓsPn[wj<斅t+< ېl0Q!X?IroQĮ| aZ;pYΎOplhq|5$ꌑWHd7SFހ(
NdnG:!q7ZH
gt?ʮY&d"gL$2?;[>j
JrK`/:AFg+e~qj
以定点A(2,3)和动点B为焦点的椭圆经过点P(-2,0),Q(2,0),则动点B的轨迹方程是
以定点A(2,3)和动点B为焦点的椭圆经过点P(-2,0),Q(2,0),则动点B的轨迹方程是
以定点A(2,3)和动点B为焦点的椭圆经过点P(-2,0),Q(2,0),则动点B的轨迹方程是
设:B(x,y)
则:
PA+PB=QA+QB
因:PA=5、QA=3
则:
5+PB=3+QB
QB-PB=2=常数
即:点B到点Q与点B到点P的距离之差为常数
点B的轨迹是以Q、P为焦点的双曲线的左支
c=2、2a=2,即:a=1
得:b²=c²-a²=3
动点B的轨迹方程是:x²-y²/3=1 (x
以定点A(2,3)和动点B为焦点的椭圆经过点P(-2,0),Q(2,0),则动点B的轨迹方程是
、如图,椭圆 (a>b>0)过点 ,其左、右焦点分别为F1,F2,离心率 ,M,N是椭圆右准线上的两个动点,且.(1)求椭圆的方程;(2)求MN的最小值;(3)以MN为直径的圆C是否过定点?请证明你的结论
问一道解析几何 关于椭圆的椭圆焦点在x轴 椭圆上的点到焦点最远距离3 最短距离1(1)求椭圆方程 (2)若l:y=kx+m 与椭圆交于A.B点 以AB为直径的圆过椭圆右顶点 求证l过定点.
已知椭圆C:X^2/a^2+y^2/b^2=1 (a>b>0)的上顶点为A,左右焦点为F1,F2,且椭圆过P(4/3,b/3)以AP为直径的圆恰好过F2若动直线l与椭圆C有且只有一个公共点,在x轴上是否存在两定点,使其到直线l的距离之积为定
已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),圆P过点B且与圆A内切,则圆心P的轨迹方程是多少?故P点的轨迹为以A和B为焦点的椭圆为什么是椭圆啊?
以F1(0,-1),F2(0,1)为焦点的椭圆C过点P(根号2/2,1).1.求椭圆C的方程2.过点S(-1/3,0)的动直线L交椭圆C于A.B两点,试问:在坐标平面上是否存在一个定点T,使得无论L如何转动,以AB为直径的圆恒过
f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最值
f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最小值
已知椭圆C经过点M(1,3/2),两个焦点是F1(-1,0)和F2(1,0),1)求椭圆C的方程(2)若A,B为椭圆C的左右顶点,P是椭圆C上异于A,B的动点,直线AP与椭圆在B点处的切线交于点D,当直线AP绕点A转动时,求证:以BD
已知椭圆C:x^2/2+y^2=1.过点S(0,-1/3)的动直线L交椭圆C于A,B两点,问:是否存在一个定点T,使得以AB为直...已知椭圆C:x^2/2+y^2=1.过点S(0,-1/3)的动直线L交椭圆C于A,B两点,问:是否存在一个定点T,使得以AB
设F1F2分别是椭圆x2/4+y2=1的左右焦点.(1)若P是该椭圆上的一个动点,求|PF1|-|PF2|的最大值和最小值.(2)设过定点M(0,2)直线l与椭圆交于不同两点A,B,且角AOB为锐角,求l的斜率k取值范围.
以定点A(2,8)和动点B为焦点的椭圆经过点P(-4,0)、Q(2,0).(1)求动点B的轨迹方程;(2)是否存在实数k,使直线y=kx+2与上述B点轨迹的交点C,D恰好关于直线l:y=2x对称?如果存在,求出k的值;如果不存在
以定点A(2,8)和动点B为焦点的椭圆经过点P(-4,0)、Q(2,0).(1)求动点B的轨迹方程;(2)是否存在实数k,使直线y=kx+2与上述B点轨迹的交点C,D恰好关于直线l:y=2x对称?如果存在,求出k的值;如果不存在
以定点A(2,8)和动点B为焦点的椭圆经过点P(-4,0),Q(2,0) (1)求动点B的轨迹方程(2)是否存在实数k,使直线y=kx+2与上述B点轨迹的交点C,D恰好关于直线l:y=2x对称?如果存在,求出k得知;如果不存
已知直线x+y-1=0经过椭圆x∧2/a∧2+y∧2/b∧2=1的顶点和焦点F,一,求椭圆的标准方程二,斜率为k,且过点F的动直线l与椭圆C交于A.B两点,点A关于x轴对称点为D求证直线BD过定点
F1是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上的动点,A(1,1)为定点,则|PA|+|F1|的最小值为A.9-根号2 B.6-根号2 C.3+根号2 D6+根号2
已知点A(-3,1)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线上,过A点,斜率为-5/2的光线,经直线y=-2反射后经过椭圆的左焦点F(1)求椭圆方程(2)点p是直线y=-2上的一个动点,求以AP为直径且经过点F的圆
已知点A(-3,1)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线上,过A点,斜率为-5/2的光线,经直线y=-2反射后经过椭圆的左焦点F(1)求椭圆方程(2)点p是直线y=-2上的一个动点,求以AP为直径且经过点F的圆