初三数学试题及答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:40:53
初三数学试题及答案
xY[SG+󒪸( Te% o\RI)f̛ @AXl4BR?sy_wGBb'.ǚ>;>doenz9_H э#lQ~;"Å*|3Y ȋ\Ϟx*wFٷfH+yeywTj kiTJM{g!32$ڨb?YURlƙ"r]r]IwnvJ֡,T|}KQZg`}8ƳX (d|x&J51j4#tTdѧm˦]~F~*]λO(Rf9Q). |m Ȥ-yfg7)~C_§W2^ xC#c l4|f/)QKorB=UlM3<;\J}vsʃkv;`4叨"^_^+i3~F޲"arrAorC]y$5y@̓%OckĠϯ}##:5xZXsJǣdֻkC2JG|`j ӻrCuHQ ^mL 8̶i$u3DUCӬ$Z^> .bskj?_,IrEhA{ w4xO#Q%A&qb(F}0${9︁41 .93;Ya v]r-~{IJ UFvW )ow7R p8&/APohj["1]ࠁh>m ?0w-)º'2PK& mx~ĩ%4_:].!ۘJ<53ӂ.{lxNSHd.U|Z扦Y?/WWt .x:#(PW<(]n:ɐˣV" 1&? }H;?)ž?\^vVSPhFTD+[n`ܔMP01꣸nL\V:*ѮD\/[1Bcl8<+֧/@/Pr MTDaTy|#vY:CY7K4&xmd0N&c&ѲGF;J Y򾀈A9p@uB3hqEo!=+z/N*}Ol牟y'xߞw~Ҿ

初三数学试题及答案
初三数学试题及答案

初三数学试题及答案
2009年广州市初中毕业生学业考试
数 学
满分150分,考试时间120分钟
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 将图1所示的图案通过平移后可以得到的图案是( A )

2. 如图2,AB‖CD,直线 分别与AB、CD相交,若∠1=130°,则∠2=( C )
(A)40° (B)50° (C)130° (D)140°
3. 实数 、 在数轴上的位置如图3所示,则 与 的大小关系是( C )
(A) (B)
(C) (D)无法确定
4. 二次函数 的最小值是( A )
(A)2 (B)1 (C)-1 (D)-2
5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D )
(A)这一天中最高气温是24℃
(B)这一天中最高气温与最低气温的差为16℃
(C)这一天中2时至14时之间的气温在逐渐升高
(D)这一天中只有14时至24时之间的气温在逐渐降低
6. 下列运算正确的是( B )
(A) (B)
(C) (D)
7. 下列函数中,自变量 的取值范围是 ≥3的是( D )
(A) (B)
(C) (D)
8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )
(A)正十边形 (B)正八边形
(C)正六边形 (D)正五边形
9. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( B )
(A) (B) (C) (D)
10. 如图6,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则ΔCEF的周长为( A )
(A)8 (B)9.5 (C)10 (D)11.5
二、填空题(本大题共6小题,每小题3分,满分18分)
11. 已知函数 ,当 =1时, 的值是________2
12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3
13. 绝对值是6的数是________+6,-6
14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略
15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第 个“广”字中的棋子个数是________2n+5

16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)
17. (本小题满分9分)
如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点.
证明:四边形DECF是平行四边形.
18. (本小题满分10分)
解方程
19.(本小题满分10分)
先化简,再求值: ,其中
20.(本小题满分10分)
如图10,在⊙O中,∠ACB=∠BDC=60°,AC= ,
(1)求∠BAC的度数; (2)求⊙O的周长
21. (本小题满分12分)
有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.
(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;
(2)求红球恰好被放入②号盒子的概率.
22. (本小题满分12分)
如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2).
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法).
23. (本小题满分12分)
为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?
24.(本小题满分14分)
如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若RtΔGBF的周长为1,求矩形EPHD的面积.
(1)易证ΔABF≌ΔADH,所以AF=AH
(2)如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:FH=AG+AE
(3)设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得
(1-x)2+(1-y)2=( x+y-1)2,
化简得xy=0.5,
所以矩形EPHD的面积为0.5.
25.(本小题满分14分)
如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 .
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.
(1)OC=1,所以,q=-1,又由面积知0.5OC×AB= ,得AB=
设A(a,0),B(b,0)
AB=b-a= = ,解得p= ,但p