谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:29:09
谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
谁能帮忙解下这个很难的微分方程,英文的,
A second order homogeneous Cauchy-Euler Equation is an equation of the type:
Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE and give the general solution to the problem.
Question 2:Show that if the roots of theauxiliary equation are complex:m1,2=a+bi or a-bi,the general solution may be written as y(x)=x^a [c1*cos(b*ln(x)+c2*sin(b*lnx)).
谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
个二阶齐次方程柯西欧拉方程的类型:问题1:假设一个解决方案在形式y = x ^ m获得辅助方程为汉英德,给一般的解决问题的办法.问题2:表明,如果theauxiliary方程的根是复杂的:m1,2 = + bi或bi,通常的解决方案可能会写成y(x)= x ^[c1 * cos(b * ln(x)+ c2 *罪(b * lnx)).