谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:29:09
谁能帮忙解下这个很难的微分方程,英文的,     A second order homogeneous Cauchy-Euler Equation is an equation of the type:                  Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
xTN@~9UH+!B,^k@ZR@ EHļLvE'6U9URU0f7[ѷEKMqml|슰mK6EuVwvjv W0N5fsƨef jQq!V3%3:@@,.Lm/Gy|- s583ˊ32j֠?qxЉ_'ËHJ@ ,OR ޵1-1]m5N_k6<)IqAOaCu>CAcmЊb!28@2U&A0KWY T˥4Ԕaal@˧nnƟQbnkYm&ms-kI;]mv9ELEͰL!&fܬgK> AFDȃyRG)=U0GQ!&~^6wd}1-ȍbQ~8}|7n',cT]VWPNݩL%/g 1&˱z pOZRE(T*9

谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
谁能帮忙解下这个很难的微分方程,英文的,
     A second order homogeneous Cauchy-Euler Equation is an equation of the type:                 

Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE and give the general solution to the problem.                                                                                          

Question 2:Show that if the roots of theauxiliary equation are complex:m1,2=a+bi or a-bi,the general solution may be written as y(x)=x^a [c1*cos(b*ln(x)+c2*sin(b*lnx)).
 

谁能帮忙解下这个很难的微分方程,英文的, A second order homogeneous Cauchy-Euler Equation is an equation of the type: Question 1:Assuming a solution in the form y=x^m derive the auxiliary equation for the C-E DE a
个二阶齐次方程柯西欧拉方程的类型:问题1:假设一个解决方案在形式y = x ^ m获得辅助方程为汉英德,给一般的解决问题的办法.问题2:表明,如果theauxiliary方程的根是复杂的:m1,2 = + bi或bi,通常的解决方案可能会写成y(x)= x ^[c1 * cos(b * ln(x)+ c2 *罪(b * lnx)).