才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:39:01
才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增.
x){tgs*FD>8ɮ 7Mm7HM[ K;RSHvϦoK=b}=@sV=wEl sh~ r';>et>ot6<_y3.YlYS-օi3LхIhB݌\"t';ve"AdR $ف/;

才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增.
才子来!
X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增.

才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增.
高中数学有点忘记,只能给大概答案:
F(X)+F(Y)=F(X+Y)+2
F(X+Y)-F(Y)=F(X)-2
当X>0时,F(X)>2
即F(X+Y)-F(Y))>0
又因为X+Y>Y
所以F(X)在R上单增

才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X)在R上单增. x,y属于R 且f(x)+f(y)=f(x+y)恒成立 当x>0,f(x) x,y属于R 且f(x)+f(y)=f(x+y)恒成立 当x>0,f(x) x,y属于R 且f(x)+f(y)=f(x+y)恒成立 当x>0,f(x) f(x)满足f(1)=1/4 4f(x)f(y)=f(x+y)+f(x-y) (x ,y属于R)则 f(2010)=? 已知函数f:R->R满足 f(f(x)+f(y))=f(x)+y(x,y属于R).则f(2011)=? 函数f(x) 满足关系f(xy)=f(x)+f(y),x,y属于R,求f(1); 函数f(x)满足关系f(xy)=f(x)*f(y)(x,y属于R)求f(1) f(x)定义在R上 对任意x.y属于R 都有f(x+y)=f(x)+f(y)判断f(x)的奇偶性 高中数学函数题已知函数f(x)满足:f(1)=1/4,4f(x)f(y)=f(x+y)+f(x-y) (x,y属于R),则f(2010)=?已知函数f(x)满足:f(1)=1/4,4f(x)f(y)=f(x+y)+f(x-y) (x,y属于R),则f(2010)=? 定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3)定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3) f(x)定义域为R,对任意x,y属于R有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0求证:f(0)=1 y=f(x)为偶函数 恒为正的函数f(x),对任意x,y属于R有f(x+y)=f(x)*f(y),如果x>0时,f(x) 已知f(x)对任意x、y(属于R)满足f(x)+f(y)=f(x+y) 且当x>0时,f(x) 已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y).当x>0时,f(x) 已知f(x)对任意x,y属于R,总有f(x)+f(y)=f(x+y)且x>0时,f(x) 已知f(x)对任意x,y属于R,总有f(x)+f(y)=f(x+y)且x>0时,f(x) 设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)