x,y,z满足x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求x,y,z,x^4+y^4+z^4等于几

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:48:32
x,y,z满足x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求x,y,z,x^4+y^4+z^4等于几
xUj0~CXb]վHi}[ǒЄBHJ/m  fC&s+dknS6 ky>}ߌf4YMŷ?uJrRoC_m M&GK1&;A\ .7v9ϦY\}=}žMƍʎ_`V9Zh4i~]t~p+nD$J>t`{oP7W 1;&t&劲B/rQ}L-RS!^-NﮌGG1|MYyEa୑q>Y.t]0Pt AG!sɃa+=i/b~c3Ss * r"6;9'R5]ϒ=I-A'1F 'ܩ&FS.kI R4 0`D{bo{` |Q

x,y,z满足x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求x,y,z,x^4+y^4+z^4等于几
x,y,z满足x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求x,y,z,x^4+y^4+z^4等于几

x,y,z满足x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求x,y,z,x^4+y^4+z^4等于几
x+y+z=3 (1)
x²+y²+z²=29 (2)
x³+y³+z³=45 (3)
--------------------------------------------------------------------------
由方程(1)得
x+y=3-z (4)
(x+y)²=(3-z)²
x²+y²+2xy=9-6z+z²
x²+y²+z²+2xy=9-6z+2z²
29+2xy=9-6z+2z²
xy=z²-3z-10 (5)
--------------------------------------------------------------------------
由方程(3)得
(x+y)(x²-xy+y²)+z³=45
代入(4)和(5)得
(3-z)(29-z²-z²+3z+10)+z³=45
(3-z)(39-2z²+3z)+z³=45
z³-3z²-10z+24=0
(z³-6z²+12z-8)+(3z²-12z+12)-10z+20=0
(z-2)³+3(z-2)²-10(z-2)=0
(z-2)[(z-2)²+3(z-2)-10]=0
(z-2)(z-2+5)(z-2-2)=0
(z-2)(z+3)(z-4)=0
z=2,-3,4
--------------------------------------------------------------------------
z=2时,xy=-12,x+y=1 解得 x=4,y=-3 或 x=-3,y=4
z=-3时,xy=8,x+y=6 解得 x=4,y=2 或 x=2,y=4
z=4时,xy=-6,x+y=-1 解得 x=2,y=-3 或 x=-3,y=2
原方程组的解是
x = 4,y = 2,z = -3
x = -3,y = 2,z = 4
x = 2,y = 4,z = -3
x = -3,y = 4,z = 2
x = 4,y = -3,z = 2
x = 2,y = -3,z = 4
--------------------------------------------------------------------------
x^4+y^4+z^4
=(x²+y²)²-2x²y²+z^4
=(29-z²)²-2(z²-3z-10)²+z^4
=12z³-36z²-120z+641
=12(z-2)(z-4)(z+3)+353
=353