已知a-b=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最大值及最大值事的条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:23:12
已知a-b=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最大值及最大值事的条件
已知a-b=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最
已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最大值及最大值事的条件
已知a-b=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最大值及最大值事的条件
首先b=a—8/3π,f(x)=(1+cosa)/(1/sin(a/2)—sin(a/2))-4sin²(a/4+π/12)
=2cos²(a/2)sin(a/2)/(1-sin²(a/2))-2+2cos(a/2+π/6)
=sina/2﹣2+√3 cosa/2
=2sin(a/2+π/3)-2
∴最大值是0
最大值的条件:a=4kπ-π/3(k∈Z)
f(x)=(1+cosa)/[1/sin(a/2)-sin(a/2)]-[2-2cos(π/2 -b/2)]
=(1+cosa)/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2[cos(a/2)]^2/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2sin(a/2)-2+2sin...
全部展开
f(x)=(1+cosa)/[1/sin(a/2)-sin(a/2)]-[2-2cos(π/2 -b/2)]
=(1+cosa)/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2[cos(a/2)]^2/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2sin(a/2)-2+2sin(b/2)
=2[sin(a/2)}+sin(b/2)]-2
=4sin[(a+b)/4][cos[(a-b)/4]-2
=2sin[(a+b)/4]-2
sin[(a+b)/4]=1
(a+b)/4=2kπ+π/2 (k∈Z)
a+b=10kπ (k∈Z)
即当a+b=10kπ (k∈Z)时,f(x)最大,最大值为0
收起