求线代帝,关于相似矩阵的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:47:10
求线代帝,关于相似矩阵的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B
xRN@~=ز{3@o7/ Pm#\cM4U}SN}'||mp_SݳRaG"y.Mwi.&&MRxEWY;YNx ly ՞^R+4vG&`kP Fk"RFyM"wn`d{Ҷv[iO[!ZPn##.]e_u(SF$F)Uʓp]<搕/ʥ"]*j/=ߋ7Rp2w='[m u֋@Pkٛ;F9)

求线代帝,关于相似矩阵的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B
求线代帝,关于相似矩阵的一道题
设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B

求线代帝,关于相似矩阵的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B
B 是由 Aαi 的组合系数构成的
A(α1,α2,α3)
= (Aα1,Aα2,Aα3)
= (α1+α2+α3,2α2+α3,2α2+3α3)
= (α1,α2,α3)B
B=
1 0 0
1 2 2
1 1 3
注:B的第1列是 Aα1=α1+α2+α3 的组合系数 1,1,1.其它类似

问一道关于相似矩阵的证明题(线性代数)设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵.证明:对任意常数t,tE-A与tE-B相似. 求线代帝,关于矩阵的相似和对角化的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求可逆矩阵P,使得P(-1,上标)AP为对角矩阵 求线代帝,关于相似矩阵的一道题设A为三阶矩阵,α1、α2、α3是线性无关的三维向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3,求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 设A为三阶矩阵,为A的伴随矩阵,且,求. 关于线性代数的一道题 设5阶方阵A的秩为3,则A的伴随矩阵A*=() 一道线性代数矩阵的题,设A为3阶矩阵,|A|=1/2,求|(2A)^(-1)-5A*| 线性代数矩阵知识! 设2阶矩阵A相似于矩阵B=(2,0 2,-3) E为2阶单位矩阵 则与矩阵E-A相似的矩阵是 关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆关于线性代数的一道选择题,遇到题目不知如何下手,设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r① 一道关于矩阵的证明题设A为可逆矩阵,且A的元素全为整数,证明:A的逆矩阵中所有元素也全为整数的充要条件是|A|=+1或-1. 关于对称矩阵的相似对角阵的一道题目设三阶实对称矩阵 2 -2 0 A=( -2 1 -2 ) 0 -2 0 则与矩阵A相似的对角阵为______ . 证明:设A为n阶矩阵,A的平方等于A ,证明A一定能相似对角化. 高数关于特征值与特征向量的一道题~若4阶矩阵A、B相似,A的特征值为:1/2,-1/2,-1,1/3 则行列式|B逆-E|=?答案是24… 设A为三阶矩阵,|A|=2,其伴随矩阵为A* …… 求伴随矩阵的伴随矩阵(A*)*, 线性代数关于相似矩阵的题设方阵A与1 0 00 1 00 0 -2相似,求|A+A^-1| 线性代数相似矩阵的一道题,求解 关于线性代数的一道问题设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为多少 设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵 D正交矩阵