已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 22:59:45
已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为
xŒN@] @X*]uqcnXP Mc&v -U_;E1.I&3sdr:o*V KKlQ an^sz fQA|E&mPN3ϔ ]zJ N~GkM(xLmU!`C-#GsV!T% e.M:6-B3 ߠ; SAYZH ֽ]ͥ .:B/r%)G?jN I Mb_dډ V<ƈ?DԮP0sNFz`mud.YAOmE

已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为
已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为

已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为
首先f(x)为R上的奇函数,则f(0)=0,设第二个零点为a,则根据奇函数的对称性,第三个零点为-a;
g(x)是把f(x)向左移动两个单位得到的,
所以-a,0,a这三个零点都向左移动两个单位,得新的零点为:-a-2,-2,a-2;
所以,三个零点之和为:(-a-2)+(-2)+(a-2)=-6
即g(x)的所有零点之和为-6
希望能帮到你,如果不懂,请Hi我,祝学习进步!

已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(0)=2,则f(2012)的值为多少? 已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,求f(2006)的值 已知函数f(x)是在R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(0)=2,则f(2011)的值为多少 已知函数f(x)是定义在R上的偶函数,若函数g(x)是奇函数,且g(x)=f(x-1),g(3)=2008,求f(2010)的值 已知f(x)是一个定义在R上的函数,求证明g(x)=f(x)+f(—x)是偶函数,h(x)=f(x)-f(-x)是奇函数 已知函数f(x)是定义域为R的偶函数,定义域在R上的奇函数g(x)过点(—1,1)且g(X)=f(x-1),则f(2007)+f(2008)= 若f(x),g(x)是定义在R上的函数,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1/(X²-2X+1),求f(x),g(x)的表达式 已知f(x),g(x)是定义在R上的奇函数,判断函数G(x)=f(x)g(x)的奇偶性,并证明 函数奇偶性的题麻烦给详细的解答过程1、若f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=1/x-1,则f(x)=?,g(x)=?2、已知f(x)和g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2,且F(-2)=5则F(2)=?3、已知f(x)为奇函数, 已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为 若f(x),g(x)是定义在R上的函数,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=1/(x平方-x+1)求f(x)的表达式 若f(x),g(x)是定义在R上的函数,f(x是奇函数,g(x)是偶函数,且f(x)+g(x)=1除以x*2-x+1求f(x)表达式 已知f(x)是定义在R上的函数且满足f(X)是偶函数f(0)=2005,g(x)=f(x-1)是奇函数则f(2005)的值为 已知f(x)是定义在R上的函数且满足f(X)是偶函数f(0)=2005,g(x)=f(x-1)是奇函数则f(2005)的值为 已知定义在R上的函数f(x),g(x),h(x)满足条件:g(x)为偶函数,h(x)为奇函数,且f(x)=g(x)h(x)已知定义在R上的函数f(x),g(x),h(x)满足条件:g(x)为偶函数,h(x)为奇函数,且f(x)=g(x)+h(x)(1)试用f(x)分别表示函数g( 若f(x),g(x)定义在R上的函数f(x)是奇函数g(x)是偶函数且f(x)+g(x)=1/(x²-x+1),求f(x) 已知定义在r上的函数奇函数f(x),偶函数g(x),且f(x)+g(x)=a^x,求证f(2x)=2f(x)g(x)已知定义在r上的函数奇函数f(x),偶函数g(x),且f(x)+g(x)=a^x,(a大于0,且不等于1),求证f(2x)=2f(x)g(x) (1)设f(x)是R上的任意函数,则下列叙述正确的是A,f(x)f(-x)是奇函数 B,f(x)|f(x)|是奇函数C,f(x)-f(-x)是偶函数 D,f(x)+f(-x)是偶函数(2)定义在区间(-∞,+∞)上的奇函数f(x)为单调增函数,偶函数g