定义在R上的奇函数f(x)满足f(3+x)=f(3-x),且f(x)在[0,3]上单调递增,则A.f(-2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 19:02:09
定义在R上的奇函数f(x)满足f(3+x)=f(3-x),且f(x)在[0,3]上单调递增,则A.f(-2)
xTM`+=IOĿh ꭂ톏uv]>bXY;m9n5\`bҤogyfy`v,'y?nܦ! Bˆuq!Y# M(nS豠=NJ4aޤ>Hso\- E`ٌ>CIcri4r0nk vṵ7:롴5lm]D&RE(I t A=1ۓQwaK$*`8bY__򉧢s* Յwet9Ij!2C P ,:twձmB@x`X ' 65sd|T<&6un#}a]1;;G7"{zkw2h-PZ8^kD:`Tp{4n}(p<ƗokWb}H i("* kj%/hI'G&&Th B7q{'`3hT9X1tA7:iW

定义在R上的奇函数f(x)满足f(3+x)=f(3-x),且f(x)在[0,3]上单调递增,则A.f(-2)
定义在R上的奇函数f(x)满足f(3+x)=f(3-x),且f(x)在[0,3]上单调递增,则
A.f(-2)

定义在R上的奇函数f(x)满足f(3+x)=f(3-x),且f(x)在[0,3]上单调递增,则A.f(-2)
f(x)=-2^(6+x)
首先,当x∈(0,3)时候,有3-x∈(0,3)
所以f(3-x)=2^(3-x)
同时又因为f(3+x)=f(3-x),所以f(3+x)=f(3-x)=2^(3-x) ①
此时x∈(0,3),得到3+x∈(3,6),令3+X=t ② .即t∈(3,6)
将②带入①中,得到f(t)=2^(6-t) t∈(3,6),
根据奇函数性质,有f(-t)=-2^(6-t) t∈(3,6),
令-t=x 因为 t∈(3,6),所以x∈(-6,-3)
所以f(x)=-2^(6+x) x∈(-6,-3)

首先奇函数有三个特殊性质:1、f(x)+f(-x)=0;2、图像关于原点对称;3、f(0)=0(如果0在定义域内)因为f(3+x)=f(3-x),所以f(x)=f(6-x)(令x=x+3即可)而当x∈(0,3)时,6-x∈(3,6)所以x∈(3,6) 时,f(x)的解析式也为y=2的x次幂由奇函数的第一个和第二个性质:当x∈(-6,-3)时,f(x)的解析式为y=-2的(-x)的幂
再将数...

全部展开

首先奇函数有三个特殊性质:1、f(x)+f(-x)=0;2、图像关于原点对称;3、f(0)=0(如果0在定义域内)因为f(3+x)=f(3-x),所以f(x)=f(6-x)(令x=x+3即可)而当x∈(0,3)时,6-x∈(3,6)所以x∈(3,6) 时,f(x)的解析式也为y=2的x次幂由奇函数的第一个和第二个性质:当x∈(-6,-3)时,f(x)的解析式为y=-2的(-x)的幂
再将数带进去算就可以了

收起