{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,记Sn=a1+a2+a3+…+an,则 a2008=?S2008=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:47:17
xR_KA*yuoIr6>ܦ"`%`4ZH#i&6|xwf!ofvf~Ln.n7O3P.AqՉZ|F
{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,记Sn=a1+a2+a3+…+an,则 a2008=?S2008=?
{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,记Sn=a1+a2+a3+…+an,则 a2008=?S2008=?
{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,记Sn=a1+a2+a3+…+an,则 a2008=?S2008=?
利用递推关系可得
a1=a,a2=b,a3=b-a,a4=-a,a5=-b,a6=a-b,a7=a,
于是可得该数列为周期数列,周期为6,
于是a2008 = a4 = -a
S2008=S2004+a2005+a2006+a2007+a2008=0+a1+a2+a3+a4=2b-a
a1=a
a2=b
a3=b-a(因为a(n+1)=an-a(n-1))
a4=-a
a5=-b
a6=a-b
a7=a
出现循环
a(6m-5)=a
a(6m-4)=b
a(6m-3)=b-a
a(6m-2)=-a
a(6m-1)=-b
a(6m)=a-b
a(2008)=a(335*6-2)=-a
S2008=S(334*6+4)=334*0+a+b+(b-a)+(-a)=2b-a
由an+1=an-an-1得
a1=a
a2=b
a3=a2-a1=b-a
a4=a3-a2=-a
a5=a4-a3=-b
a6=a5-a4=-b+a
a7=a6-a5=a
由此可知an是以6为周期的数列
而2008/6=333
故a2008=-b+a
同理可得sn也是以6为周期
S2008=0
数列{an}满足a1=1 an+1=2n+1an/an+2n
已知数列{an}满足an+1=an+n,a1等于1,则an=?
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
已知{an}满足a1=1.an=3*n+2An-1,求an
设数列{an}满足an=2an-1+n 若{an}是等差数列,求{an}通项公式
已知数列an满足1/a-an=2根号n,且an>0.求an的通项公式是数列{an}满足1/an-an=2根号n,且an>0,求an的通项公式。
已知数列{an}满足a(n+1)=an+n,a1=1,则an=
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
实数列{an}满足an+2=|an+1|-an,是试判断{an}的周期性
已知数列an满足a1=4,an=n+1/n-1乘以an-1则an=
已知数列{an}满足a1=1/2,an+1=an+1/n的平方+n求an
已知数列an满足a1=1/2,an+1=an+1/n²+n,求an
已知数列an满足an+1/an=n+2/n且a1=1,则an=
数列{an}满足an+1+(-1)^n an=2n-1,则{an}的前60项之和是多少