证明 罗必达法则 1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x) 这个可以

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:22:31
证明 罗必达法则 1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x) 这个可以
xRn@ŖsOT E$$@l]HMGZ %QJE4)Tn'͝Wpe(ɚ{ιψA4p` Kr!ʪ͗E4 yI` lA8Nԟ}]Z*6t|X5MɄ3pCHN|<]$E!Kx^բ15 `% WcE` /o"MHB'(UYPӓf2ΠI>78RH$Zim%MIaݓZ uޯG0r_q알V®(WL# ,j(n,ly z1hL'jKk ޔ&=G A5J#Cr&f*MipMؙnzۤ ,*-T71Ai83C D#'d},s]{Ǿ

证明 罗必达法则 1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x) 这个可以
证明 罗必达法则
1)当x→a时,函数f(x)及F(x)都趋于零;
(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;
(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么
x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)
这个可以用 当x→a时 f(x)都趋于零再用柯西中值定理来证明
但是 当x→∞时,limf(a)=f(a) ,
x→a
那怎么证明x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)

证明 罗必达法则 1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x) 这个可以
x→∞可以把x用1/x代换,即可变为1/x→0的形式,
我们可以来算一下
x→∞,f(x)→0,F(x)→0
lim (x→∞) f(x)/F(x)
(取y=1/x)
=lim(y→0) f(1/y)/F(1/y)
(由你已经证明出来的情况得到)
=lim(y→0) f'(1/y)(-1/y^2)/[F'(1/y)(-1/y^2)]
=lim(y→0) f'(1/y)/F'(1/y)
=lim(x→∞) f'(x)/F'(x)

这个题目才5分……

证明 罗必达法则 1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x) 这个可以 关于洛必达法则的证明…洛必达法则: (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim 请问数学中使用洛必达法则的条件中的问题书中写了洛必达法则的3个条件0/0型:(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x) 高数二,洛必达法则洛必达法则是怎么推导出来的?洛必达凭什么,怎么得出的这个法则,你说是这样就是这样吗?依据是什么?还有为什么不是1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻 高数二,关于洛必达法则洛必达法则是怎么推导出来的?洛必达凭什么,怎么得出的这个法则,你说是这样就是这样吗?依据是什么?还有为什么不是1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去 指数函数题当a>1时,证明函数f(x)=a^x+1/a^x-1是奇函数 已知集合A=R,B={-1,1},对应法则f:当x为有理数时,f(x)=-1;当x为无理数时,f(x)=1.该对应是从A到B的函数吗?已知集合A=R,B={-1,1},对应法则f:当x为有理数时,f(x)=-1;当x为无理数时,f(x)=1.该对应是从集合A到集 已知函数f(x)=lnx+x-1,证明:当x>1时,f(x) 高数,罗比达法则的证明过程有点看不懂见同济第六版上册P135页证:因为求f(x)/F(x)当x→a时的极限与f(a)和F(a)无关,所以可以假定f(a)=F(a)=0为什么可以随便假设f(a)、F(a)的值,这种假设为什么可行? 证明:如果函数f(x)当x→a时的极限存在,则函数f(x)在a的某个去心邻域内有界. 已知函数f(x)的定义域为R,且f(a+b)=f(a)·f(b),当x>0时,f(x)>1,(1)求f(0) (2)证明f(x)是增函数 函数f(x)对任意x,yR都有f(x+y)=f(x)+f(y)-1,并且当x0时,f(x)1.证明函数在R上时增函数函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y)-1,并且当x大于0时,f(x)大于1.1,证明函数f(x)在R上是增函数,若不等式f(a的平方 已知函数f(x)=2|x+1|+ax a属於R 证明:当a>2时,f(x)在R上是增函数 A=R,B={-1,1},对值法则F:当X为有理数时F(X)=1,该对应是从集合A到B的函数吗?是写出函数解析数或说理 函数f(x)对任意的a,b属于R恒有f(a+b)=f(a)+f(b)-1,当x>0时,f(x)>1,证明:f(x)是R上的增函数 已知函数f(x)的定义域为R,且f(a+b)=f(a).f(b) 当X>0时 f(x)>1 1)求f(0) 2).证明f(x)是增函数已知函数f(x)的定义域为R,且f(a+b)=f(a).f(b) 当X>0时 f(x)>1 1)求f(0) 2).证明f(x)是增函数 已知函数f(x)=(x^+2x+a)/x,x∈[1,+∞]. (1)当a=0.5时,判断并证明f(x)单调性(2)当a=-1时求函数f...已知函数f(x)=(x^+2x+a)/x,x∈[1,+∞]. (1)当a=0.5时,判断并证明f(x)单调性(2)当a=-1时求函数f(x)最小 已知函数f(x)=(lnx+a)/x (a∈R) 当a=1,且x≥1时,证明f(x)≤1