△ABC中,AD⊥BC ∠BAC=45° BD=6 DC=4 求AD是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:23:54
△ABC中,AD⊥BC ∠BAC=45° BD=6 DC=4 求AD是多少?
xSmoP+:S}R HĦ ͩ)ۀ93޶|_𔎍`Ls^j1T[ :{^ |% ! *J;ZCZT-4֟KEEKܟ~R"X|~>uabx"O'N48IQ ty%qwFdq.ɇ8NrKEy y%Nxc# IMϭn'OzqWntj,n^nVyMz[-}Iz-Px4 Z!!‚"&] Š=Thm9M%2;7OcA,Yi 6S\7UdX/?p\^0l!!vj+i<UlD9xz iZq7h<:Zmv@.h)5`S?x KR((ZmU6@H (J+dԓ`0g*ǵ\͘=5=9SylIN5v0p6Qڂh0

△ABC中,AD⊥BC ∠BAC=45° BD=6 DC=4 求AD是多少?
△ABC中,AD⊥BC ∠BAC=45° BD=6 DC=4 求AD是多少?

△ABC中,AD⊥BC ∠BAC=45° BD=6 DC=4 求AD是多少?
:(利用余弦定理、勾股定理、三角形面积公式)
由余弦定理:100=BC^2=AB^2+AC^2-2*AB*AC*cos(角BAC)=AB^2+AC^2-2*AB*AC*cos(pi/4)=AB^2+AC^2-sqrt(2)*AB*AC (1式)
(其中sqrt()是开根号的符号,cos(pi/4)=sqrt(2)/2)
设AD=x.
一方面,由勾股定理,AB^2+AC^2=(36+x^2)+(16+x^2)=2*x^2+52 (2式)
另一方面,三角形面积S=1/2*BC*AD(底乘高计算方法).S=1/2*AB*AC*sin(角BAC) (两边乘夹角计算方法). 所以有:1/2*BC*AD=1/2*AB*AC*sin(角BAC),所以有:10x=sqrt(2)*AB*AC/2 (3式)
将2式和3式带入1式:100=(2*x^2+52)-20x
整理得:x^2-10x-24=0,解得x=12(舍去负解)

这个用初二的知识应该不太好回答
这个题得用到一部分三角学的知识
你不妨先留着
等学了三角再自己做做看
先不要看那些非纯几何的解法

利用面积等列方程1/2BC*AD=1/2*45度的正弦*AB*AC