已知函数f(x)=sin^2x-2sinxcosx+3cos^2x 求函数的最小正周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:37:00
已知函数f(x)=sin^2x-2sinxcosx+3cos^2x 求函数的最小正周期
xSJ@Y&!d2W+ *nj,⋶Ђ|,Z5 $/xgNbu!d=s>θ2>$>ogwkoz-Qi f@H|w~wm+<ٵ;˨itd]bL& ̧,Os rzo!Hvc7ւʼqrjʍc+>THwV6%\Z&G5L,ǚJ>5;4lb)Ke ^|VnjlZ|09F ̨~p[MjA:z(G^UdHsRšE; U iAiuA#|fBQ"Fp$ a-dP{G\&f>?¤Cɐ`j%5n2QfHE{mL(wYkzio57.]

已知函数f(x)=sin^2x-2sinxcosx+3cos^2x 求函数的最小正周期
已知函数f(x)=sin^2x-2sinxcosx+3cos^2x 求函数的最小正周期

已知函数f(x)=sin^2x-2sinxcosx+3cos^2x 求函数的最小正周期
答:
f(x)=(sinx)^2-2sinxcosx+3(cosx)^2
=(sinx)^2+(cosx)^2-sin2x+2(cosx)^2
=1-sin2x+cos2x+1
=cos2x-sin2x+2
=√2*[(√2/2)cos2x-(√2/2)sin2x]+2
=√2*cos(2x+π/4)+2
最小正周期T=2π/2=π

1-cos2x cos2x+1
sin^(x)=--------- cos^(x)=-------- 代入f(x)得
2 2
1-cos2x cos2x+1
f(x)=------------+sin2x+3乘以-----------=sin2x+cos2x+2
2 2
再用一角一函数化!!

f(x)=(sinx)^2-2(sinx)(cosx)+3(cosx)^2
=[1-cos(2x)] / 2 -sin(2x)+3[1+cos(2x)] / 2
=cos(2x)-sin(2x)+2
=√2cos(2x+π/4)+2 ,
因此最小正周期为 T=2π/2=π 。

f(x)=sin^2x-2sinxcosx+3cos^2x
=sin^2x+cos^2x+2cos^2x-sin2x
=2+2cos^2x-1-sin2x
=2+cos2x-sin2x
=2+根号2cos(2x+π/4)
所以函数最小正周期为2π/2=π

f(x)=sin^2x-2sinxcosx+3cos^2x
=sin^2x-sin2x+3(1-sin^2x)
=-2sin^2x-sin2x+3
=-(1-cos2x+sin2x)+3
=-(1+√2sin(2x-π/4))+3
=-√2sin(2x-π/4)+2
所以周期T=2π/ω=π
望采纳