1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx 求证!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:34:10
1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx1-2×sinx×cosx/cos∧2 x -sin∧2  x=1-tanx/1+tanx          求证!
x)35:<83 } cB.P´5-I̫7QD@ע66XߨhTOj#l~̀zx6YDXmHfR"b0.L],Xӎk'g{Ny6}˙K^ S3` !@C] $[0W( SM W5aJD(ч$فb1

1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx 求证!
1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx
1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx 求证!

1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx1-2×sinx×cosx/cos∧2 x -sin∧2 x=1-tanx/1+tanx 求证!
证明:
1-2×sinx×cosx/cos∧2 x -sin∧2 x
=[(sinx)^2-2sinx*cosx+(cosx)^2]/[(cosx)^2-(sinx)^2]
分子分母同时除以(cosx)^2
=[(tanx)^2-2tanx+1]/[1-(tanx)^2]
=(tanx-1)^2/[(1-tanx)(1+tanx)]
=(1-tanx)^2/[(1-tanx)(1+tanx)]
=(1-tanx)/(1+tanx)