已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:46:13
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
xVNV

VHĬ-rGZS̭.E y,)X)Do[=;2rӮzaٿ?k^9+f-Vc?s !{%zv{hT@8Tn:qڛקlaE Vl7%'q mi L*ТpYaBӌ͡uܱ#}#ޠH 0N6t g`su&xȰLka `ya%X=f)Y9 W,5}r~-tC 9}(x>LrDa6=;~ , X=ٺ>0( 4o50Si)_\)wl4.ީYla?⃔ }1h~B%6NQ$[3Eܳ6%-1RO/C" bIv ^T?ʵ8l ~.?[44OH ] U\OoZPF?ݜ[v@_4hoh;L7Y8gSg|@;WVo81m

已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹

已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
将坐标原点从O平移至C(2,2)
那么 CB=OB-OC=(0,-2)
在新坐标系中,点A的轨迹是以C为圆心,半径为2的圆,而B点落在新Y轴的负半轴上
所以 OA与OB的夹角为
90+a (0

解 首先先算出CA的模为√2,
OC与OB不变,则可令C为圆心,r=√2,A为圆上的任意一点
圆C在第一象限且与XY轴相离
根据勾股定理,OC长2√2,CA长√2,OC与OB夹角为45
即OA与圆C相切时,OA与OB最大夹角为30度+45度=75度
OA与OB最小夹角为45度-30度=15度
向量OA与OB夹角的取值范围是[π/12,5π/12]...

全部展开

解 首先先算出CA的模为√2,
OC与OB不变,则可令C为圆心,r=√2,A为圆上的任意一点
圆C在第一象限且与XY轴相离
根据勾股定理,OC长2√2,CA长√2,OC与OB夹角为45
即OA与圆C相切时,OA与OB最大夹角为30度+45度=75度
OA与OB最小夹角为45度-30度=15度
向量OA与OB夹角的取值范围是[π/12,5π/12]

收起

本题易知,A点实际上在以C为圆心根号2为半径的圆上运动,而OB向亮即为X轴正向,做出图知圆在x轴上方,则当OA与圆下切时角最小,上切是最大,设直线OA为y=kx,圆C方程为(x-2)^2+(y-2)^2=2,利用相切时d=r=根号2得到k=2+根号3(上切)或k=2-根号3(下切),利用正切展开式球tan(45°-30°)=2-根号3,所以下切时为15°,同理上切时是75°,所以最终答案为【15°...

全部展开

本题易知,A点实际上在以C为圆心根号2为半径的圆上运动,而OB向亮即为X轴正向,做出图知圆在x轴上方,则当OA与圆下切时角最小,上切是最大,设直线OA为y=kx,圆C方程为(x-2)^2+(y-2)^2=2,利用相切时d=r=根号2得到k=2+根号3(上切)或k=2-根号3(下切),利用正切展开式球tan(45°-30°)=2-根号3,所以下切时为15°,同理上切时是75°,所以最终答案为【15°,75°】闭区间,以上为代数解法。
同理当相切时,也可不用代数法求d=r,利用几何法,设下切时OA与圆C切于D点,则角CDO=90°,又r=CD=根号2,OC=2根号2=2CD,所以∠DOC=30°,又∠COX(轴正向)=45°,所以角DOX(轴正向)=15°,同理的另一角为75°,所以答案为【15°,75°】
发现相切条件后利用几何法可避免繁琐计算,利用解三角形知识直接得到较好。

收起

向量的加减已知(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0判断三角形ABC的形状 已知向量OB=(2,0),向量OC=(2,2),向量CA=(-1,-3),求向量OA与向量OB夹角 已知向量OA.向量OC满足条件向量OA+向量OB-向量OC=向量0,且【OA】=【OB】=1,【OC】=根号2则三角形ABC的 已知O为原点,向量OA=(3,1)向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标? 已知O为原点,向量OA=(3,1),向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标 3OA向量-2OB向量=(-2,0),OC向量=(-2,1),OA向量*OC向量=2,绝对值OB向量=4,求角BOC 已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),求向量OA与向量OB已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),1、求向量OA与向量OB2、以向量OA与向量OB为邻边作平行四边形OABC,求向量OC 已知向量OA=(1,1),向量OB=(-1,2),以向量OA,向量OB作平行四边形OACB,则向量OC与向量AB的夹角为? 已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹 3*向量OC-2*向量OA=向量OB,则向量AC=?向量AB 若O为△ABC的内心,且满足(向量OB-向量OC).(向量OB+向量OC-2向量OA)=0,则△ABC的形状为? 若O为三角形ABC的内心,且满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0则三角形的形状 在平面向量直角坐标系xoy中,已知向量OA=(3,-1),向量OB(0,2),若向量OC在平面向量直角坐标系xoy中,已知向量OA=(3,-1),向量OB(0,2),若向量OC·向量AB=0,向量AC=λOB,则实数λ= 已知△OAB是以OB为斜边的等腰直角三角形,OB=根号2 向量OC=向量OA+(1-a)向量OB,向量OC=向量OA+(1-a)向量OB 若a^2>1 则向量OC*向量AB的取值范围是( )A.(负无穷,0)∪(2,正无穷) B,(负无穷,-2)∪ 已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA求周长 已知向量OA的绝对值=向量OB的绝对值=向量OC的绝对值=1,向量OA⊥向量OB ,向量CB乘以向量CA≤0,向量OA+向量OB-向量OC的绝对值的最大值? 已知|向量OA|=|向量OB|=1,向量OA与OB的夹角为120°,向量OC,OA的夹角为25°,|向量OC|=2√3,用向量OA,OB表示向量OC 答案是OC=4sin95°·向量OA+4sin25°·向量OB说错了【。是向量 已知向量OA,OB,OC,满足向量OA+OB+OC=0,|OA|=1,|OB|=2,|OC|=3,求OA,OB,OC两两夹角分别为多少?