已知实数a,b,c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(b-c)^2+(c-a)^2的最大值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 00:28:33
已知实数a,b,c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(b-c)^2+(c-a)^2的最大值是
xN0_'ilHE. Aď@*1|}w[zkHaHXjBXl03eP$V~+,`fjT7*Oã16@ @FQQ,f"CZI.]xw {)$`gFCѱsuQ(H\* A}Zi~D}x4r)gwRx^5u&@

已知实数a,b,c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(b-c)^2+(c-a)^2的最大值是
已知实数a,b,c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(b-c)^2+(c-a)^2的最大值是

已知实数a,b,c满足a^2+b^2+c^2=9,则代数式(a-b)^2+(b-c)^2+(c-a)^2的最大值是
a^2+b^2>=2ab
b^2+c^2>=2bc
a^2+c^2>=2ac
以上等式相加得
2(a^2+b^2+c^2)>=0
2(a^2+b^2+c^2)>=2ab+2bc+2ac
2ab+2bc+2ac<=2*9
0<=2ab+2bc+2ac<=18
(a-b)^2+(b-c)^2+(c-a)^2
=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2
=2(a^2+b^2+c^2)-(2ab+2bc+2ac)
=2*9-(2ab+2bc+2ac)
=18-(2ab+2bc+2ac)
当2ab+2bc+2ac时,代数式值最大,最大值为:18

18