设A为正定矩阵,证明:对任何正整数m,存在矩阵正定B,使B^m=A如题,主要是要证明矩阵B是正定矩阵,怎么证明?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 23:41:51
设A为正定矩阵,证明:对任何正整数m,存在矩阵正定B,使B^m=A如题,主要是要证明矩阵B是正定矩阵,怎么证明?
xRN@MpM{ Lc+P1AO3_N Յf9{nSLr54?Gmį#hm̈́ "i) (ǯPpK?PB쒀vi&d!oEאLT1艽 :qerrF]ӡtRsC@=a|)^ImLrVUxl5x谖awK ; [6صgRd8X +a;B"7x@p{;\D[3|"9g.sUO 4*q[<U>w# u(@eẉD$Inplxt/jH=ΐX?[Y57nas;/k

设A为正定矩阵,证明:对任何正整数m,存在矩阵正定B,使B^m=A如题,主要是要证明矩阵B是正定矩阵,怎么证明?
设A为正定矩阵,证明:对任何正整数m,存在矩阵正定B,使B^m=A
如题,主要是要证明矩阵B是正定矩阵,怎么证明?

设A为正定矩阵,证明:对任何正整数m,存在矩阵正定B,使B^m=A如题,主要是要证明矩阵B是正定矩阵,怎么证明?
证明:A是正定矩阵=>A是是对称矩阵,所以A可对角化,即存在正交矩阵P和对角矩阵C使得A=(P^T)CP,这里P^T表示P的转置.(注意P是正交矩阵,所以P的逆和P的转置相同.)
由于A是正定阵,则对角阵C的主对角元上的元素均为正实数,构造对角阵D,使D的主对角线元素正好是C的主对角元素开m次方.则D^m=C.
令B=(P^T)DP,则B是正定矩阵.(首先B是对称矩阵,其次因为B和D相似,而D的特征值均为正,所以B的特征值也均为正.)
且B^m=((P^T)DP)^m=(P^T)D^mP=(P^T)CP=A.